2024届江西省分宜县数学八年级第二学期期末复习检测模拟试题含解析_第1页
2024届江西省分宜县数学八年级第二学期期末复习检测模拟试题含解析_第2页
2024届江西省分宜县数学八年级第二学期期末复习检测模拟试题含解析_第3页
2024届江西省分宜县数学八年级第二学期期末复习检测模拟试题含解析_第4页
2024届江西省分宜县数学八年级第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省分宜县数学八年级第二学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知甲.乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大 B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大 D.甲.乙两组数据的数据波动不能比较2.九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16。这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,163.如图,线段AD由线段AB绕点A按逆时针方向旋转90∘得到,ΔEFG由ΔABC沿CB方向平移得到,且直线EF过点D.则∠BDF=A.30∘ B.45∘ C.504.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=-kx+k的图像大致是()A. B. C. D.5.下列说法中正确的是()A.四边相等的四边形是正方形B.一组对边相等且另一组对边平行的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线相等的平行四边形是矩形6.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30° B.45°C.90° D.135°7.如图所示,在中,的垂直平分线交于点,交于点,如果,则的周长是()A. B. C. D.8.已知三条线段长a、b、c满足a2=c2﹣b2,则这三条线段首尾顺次相接组成的三角形的形状是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形9.在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是()A.测量对角线是否平分 B.测量两组对边是否分别相等C.测量其中三个角是否是直角 D.测量对角线是否相等10.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=50°,则∠OAB的度数为()A.40° B.50° C.60° D.70°11.在□ABCD中,点P在对角线AC上,过P作EF∥AB,HG∥AD,记四边形BFPH的面积为S1,四边形DEPG的面积为S2,则S1与S2的大小关系是(

)A.S1>S2 B.S1=S2 C.S1<S2 D.无法判断12.如图,在3×3的正方形网格中,以线段AB为对角线作平行四边形,使另两个顶点也在格点上,则这样的平行四边形最多可以画()A.2个 B.3个 C.4个 D.5个二、填空题(每题4分,共24分)13.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.14.如图,在△ABE中,∠E=30°,AE的垂直平分线MN交BE于点C,且AB=AC,则∠B=________.15.在平面直角坐标系中,将直线y=2x-1向上平移动4个单位长度后,所得直线的解析式为____________.16.若个数,,,的中位数为,则_______.17.对于平面直角坐标系中的点,给出如下定义:记点到轴的距离为,到轴的距离为,若,则称为点的最大距离;若,则称为点的最大距离.例如:点到到轴的距离为4,到轴的距离为3,因为,所以点的最大距离为4.若点在直线上,且点的最大距离为5,则点的坐标是_____.18.扬州市义务教育学业质量监测实施方案如下:3、4、5年级在语文、数学、英语3个科目中各抽1个科目进行测试,各年级测试科目不同.对于4年级学生,抽到数学科目的概率为.三、解答题(共78分)19.(8分)如图,已知点E在平行四边形ABCD的边AB上,设=,再用图中的线段作向量.(1)写出平行的向量;(2)试用向量表示向量;(3)求作:.20.(8分)某校八年级同学参加社会实践活动,到“庐江台湾农民创业园”了解大棚蔬菜生长情况.他们分两组对西红柿的长势进行观察测量,分别收集到10株西红柿的高度,记录如下(单位:厘米)第一组:32394555605460285641第二组:51564446405337475046根据以上数据,回答下列问题:(1)第一组这10株西红柿高度的平均数是,中位数是,众数是.(2)小明同学计算出第一组方差为S12=122.2,请你计算第二组方差,并说明哪一组西红柿长势比较整齐.21.(8分)已知直线经过点M(-2,1),求此直线与x轴,y轴的交点坐标.22.(10分)如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=x﹣1与y轴交于点E,将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.(1)点A的坐标为,点B的坐标为;(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围;(3)易知AE⊥AD于点A,若直线l交折线AD﹣DC于点P,当△AEP为直角三角形时,请直接写出n的取值范围.23.(10分)某食品商店将甲、乙、丙3种糖果的质量按配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/、20元/、27元/.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.24.(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.25.(12分)世界卫生组织预计:到2025年,全世界将会有一半人面临用水危机,为了倡导“节约用水,从我做起”,某县政府决定对县直属机关300户家庭一年的月平均用水量进行调查,调查小组抽查了部分家庭月平均用水量(单位:吨),绘制条形图和扇形图如图所示.(1)请将条形统计图补充完整;(2)这些家庭月平均用水量数据的平均数是_______,众数是______,中位数是_______;(3)根据样本数据,估计该县直属机关300户家庭的月平均用水量不超过12吨的约有多少户.26.甲乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做300个所用的时间与乙做200个所用的时间相等,求甲乙两人每小时各做几个零件?

参考答案一、选择题(每题4分,共48分)1、B【解题分析】试题分析:先比较两组数据的方差,再根据方差的意义即可判断.∵∴乙组数据比甲组数据波动大故选B.考点:方差的意义点评:生活中很多数据的收集整理都涉及方差的意义应用,故此类问题在中考中较为常见,常以填空题、选择题形式出现,难度一般,需多加留心.2、D【解题分析】

根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.【题目详解】解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.

故选:D.【题目点拨】本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.3、B【解题分析】

由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.【题目详解】解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,

∴∠DAB=90°,AD=AB,

∴∠ABD=45°,

∵△EFG是△ABC沿CB方向平移得到,

∴AB∥EF,

∴∠BDF=∠ABD=45°;故选:B【题目点拨】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质.4、D【解题分析】

先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【题目详解】∵正比例函数y=kx的函数值y随x的增大而增大,

∴k>0,

∵b=k>0,-k<0,

∴一次函数y=kx+k的图象经过一、二、四象限.

故选C.【题目点拨】考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.5、D【解题分析】

正方形:有一个角是直角且有一组邻边相等的平行四边形.平行四边形:有两组对边分别平行的四边形.菱形:在一个平面内,有一组邻边相等的平行四边形.矩形:有一个角是直角的平行四边形,矩形也叫长方形.【题目详解】A选项中四边相等的四边形不能证明是正方形,有可能是菱形.则A错误.B选项一组对边相等且另一组对边平行的四边形不一定是平行四边形,有可能是等腰梯形,所以B错误.C选项中,对角线互相垂直,不能判定四边形是菱形.根据正方形、平行四边形、菱形、矩形的性质与判定,即可得出本题正确答案为D.【题目点拨】本题的关键在于:熟练掌握正方形、平行四边形、菱形、矩形的性质与判定.6、C【解题分析】

根据勾股定理求解.【题目详解】设小方格的边长为1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【题目点拨】考点:勾股定理逆定理.7、D【解题分析】

根据线段垂直平分线的性质得出AD=BD,推出CD+BD=5,即可求出答案.【题目详解】解:∵DE是AB的垂直平分线,

∴AD=DB,

∵AC=5,

∴AD+CD=5,

∴CD+BD=5,

∵BC=4,

∴△BCD的周长为:CD+BD+BC=5+4=9,

故选D.【题目点拨】本题考查了线段垂直平分线的性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.8、C【解题分析】

根据勾股定理的逆定理判断即可.【题目详解】∵三条线段长a、b、c满足a2=c2﹣b2,∴a2+b2=c2,即三角形是直角三角形,故选C.【题目点拨】本题考查了勾股定理的逆定理、等腰三角形的判定、等边三角形的判定、等腰直角三角形等知识点,能熟记勾股定理的逆定理的内容是解此题的关键.9、C【解题分析】分析:根据矩形的判定方法逐项分析即可.详解:A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;C、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;D、根据对角线相等不能得出四边形是矩形,故本选项错误;故选C.点睛:本题考查了矩形的判定方法的实际应用,熟练掌握矩形的判定方法是解答本题的关键.矩形的判定方法有:①有一个角的直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形.10、A【解题分析】

首先根据题意得出平行四边形ABCD是矩形,进而求出∠OAB的度数.【题目详解】∵平行四边形ABCD的对角线AC,BD相交于点O,OA=OD,∴四边形ABCD是矩形,∵∠OAD=50°,∴∠OAB=40°.故选:A.【题目点拨】本题主要考查了平行四边形的性质,矩形的判定与性质,解题的关键是判断出四边形ABCD是矩形,此题难度不大.11、B【解题分析】【分析】先证四边形ABPE和四边形PFCG都是平行四边形,再利用平行四边形对角线平分四边形面积即可.【题目详解】因为,在□ABCD中,点P在对角线AC上,过P作EF∥AB,HG∥AD,所以,四边形边形ABPE和四边形PFCG都是平行四边形,所以,S△ABC=S△CDA,S△AEP=S△PHA,S△PFC=S△CGP,所以,S△ABC-S△AEP-S△PFC=S△CDA-S△PHA-S△CGP,所以,S△BFPH=S△DEPG,即:S1=S2故选:B【题目点拨】本题考核知识点:平行四边形性质.解题关键点:平行四边形对角线平分四边形面积.12、D【解题分析】

根据平行四边形的判定方法即可解决问题.【题目详解】在直线AB的左下方有5个格点,都可以成为平行四边形的顶点,所以这样的平行四边形最多可以画5个,故选D.【题目点拨】本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题.二、填空题(每题4分,共24分)13、乙对角线互相平分的四边形是平行四边形【解题分析】

根据平行四边形的判定方法,即可解决问题.【题目详解】根据平行四边形的判定方法,我更喜欢乙的作法,他的作图依据是:对角线互相平分的四边形是平行四边形.故答案为:乙;对角线互相平分的四边形是平行四边形.【题目点拨】本题主要考查尺规作图-复杂作图,平行四边形的判定定理,掌握尺规作线段的中垂线以及平行四边形的判定定理,是解题的关键.14、60°【解题分析】分析:根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据等腰三角形的性质得到∠B即可.详解:∵MN是AE的垂直平分线,∴CA=CE,∴∠CAE=∠E,∴∠ACB=2∠E,∵AB=AC,∴∠B=∠ACB=2∠E=60°,故答案为:60°点睛:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15、y=2x+1【解题分析】

根据直线平移k值不变,只有b发生改变进行解答即可.【题目详解】由题意得:平移后的解析式为:y=2x-1+4,y=2x+1,故填:y=2x+1.【题目点拨】本题考查了一次函数图象与几何变换,在解题时,紧紧抓住直线平移后k值不变这一性质即可.16、【解题分析】

根据中位数的概念求解.【题目详解】解:∵5,x,8,10的中位数为7,∴,解得:x=1.故答案为:1.【题目点拨】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17、或【解题分析】

根据点C的“最大距离”为5,可得x=±5或y=±5,代入可得结果.【题目详解】设点C的坐标(x,y),∵点C的“最大距离”为5,∴x=±5或y=±5,当x=5时,y=-7(不合题意,舍去),当x=-5时,y=3,当y=5时,x=-7(不合题意,舍去),当y=-5时,x=3,∴点C(-5,3)或(3,-5).故答案为:(-5,3)或(3,-5).【题目点拨】本题考查一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决数学问题.18、【解题分析】

解:共3个科目,数学科目是其中之一,故抽到数学科目的概率为三、解答题(共78分)19、(1);(2);(3)见解析.【解题分析】

根据平面向量的知识,再利用三角形法即可求解.【题目详解】在此处键入公式。(1)与是平行向量;(2)=+=﹣+=﹣=+=﹣+=﹣(﹣)+=-++(3)∵+=+=如图所示,【题目点拨】该题主要考查了平面向量的知识,注意掌握三角形法的应用.20、(1)47,49.5,60;(2)第二组西红柿长势比较整齐.【解题分析】

(1)根据平均数的计算公式进行计算求出第一组这10株西红柿高度的平均数,再根据中位数和众数的定义即可得出答案;(2)先求出第二组方差,再根据方差的定义,方差越小数据越稳定即可求解.【题目详解】解:(1)平均数:(32+39+45+55+60+54+60+28+56+41)=47,中位数:49.5众数:60故答案为:47,49.5,60;(2)第二组数据的平均数为:47,S22=(16+81+9+1+49+36+100+0+9+1)=30.2因为S12>S22,所以,第二组西红柿长势比较整齐.【题目点拨】本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数,中位数与众数.熟练掌握方差公式是解决本题的关键.21、(0,-3)【解题分析】

将点M(-2,1)代入直线y=kx-3,求出k的值,然后让横坐标为0,即可求出与y轴的交点.让纵坐标为0,即可求出与x轴的交点.【题目详解】∵y=kx-3过(-2,1),∴1=-2k-3,∴k=-2,∴y=-2x-3,∵令y=0时,x=,∴直线与x轴交点为(,0),∵令x=0时,y=-3,∴直线与y轴交点为(0,-3).【题目点拨】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,熟知函数与y轴的交点的横坐标为0,函数与x轴的交点的纵坐标为0是关键.22、(1)A(2,0),B(-3,0);(2)当0≤n≤1时,S=10-2n;当1<n≤时,S=2n-10;(3)n=或0≤n≤1.【解题分析】

(1)令y=0,则x-1=0,求A(2,0),由平行四边形的性质可知AB=1,则B(-3,0);(2)易求E(0,-1),当l到达C点时的解析式为y=x+,当0≤n≤1时,S=×4×(1-n)=10-2n;当1<n≤时,S=×4×(n-1)=2n-10;(3)由点可以得到AD⊥AE;当P在AD上时,△AEP为直角三角形,0≤n≤1;当P在CD上时,△AEP为直角三角形,则PE⊥AE,设P(m,4),可得=-2,求出P(-,4),此时l的解析式为y=x+,则n=.【题目详解】(1)令y=0,则x-1=0,x=2,∴A(2,0),∵C的坐标为(-1,4),四边形ABCD是平行四边形,∴AB=CD=1,∴OB=AB-OA=3,∴B(-3,0);(2)当x=0时,y=x﹣1=-1,所以E(0,-1),∵直线AE沿y轴向上平移得到l,当l到达C点时的解析式为y=x+,此时l与y轴的交点为(0,),当0≤n≤1时,S=×4×(1-n)=10-2n;当1<n≤时,S=×4×(n-1)=2n-10;(3)∵D(0,4),A(2,0),E(0,-1),∴AD=2,AE=,ED=1,∴AD2+AE2=ED2,∴AD⊥AE,当P在AD上时,△AEP为直角三角形,∴0≤n≤1;当P在CD上时,△AEP为直角三角形,则PE⊥AE,设P(m,4),∴=-2,∴m=-,∴P(-,4),∴此时l的解析式为y=x+,∴n=;综上所述:当△AEP为直角三角形时,n=或0≤n≤1.【题目点拨】本题是一次函数的综合题;熟练掌握①平行四边形的性质求点的坐标;②动点中求三角形面积;③利用直角三角形的性质解决直线解析式,进而确定n的范围是解题的关键.23、这样定价不合理,理由见解析【解题分析】

根据加权平均数的概念即可解题.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论