专题4.6求数列通项公式(强化训练)-2023-2024学年高二数学上学期重难点突破及混淆易错规避(人教A版2019)(原卷版)_第1页
专题4.6求数列通项公式(强化训练)-2023-2024学年高二数学上学期重难点突破及混淆易错规避(人教A版2019)(原卷版)_第2页
专题4.6求数列通项公式(强化训练)-2023-2024学年高二数学上学期重难点突破及混淆易错规避(人教A版2019)(原卷版)_第3页
专题4.6求数列通项公式(强化训练)-2023-2024学年高二数学上学期重难点突破及混淆易错规避(人教A版2019)(原卷版)_第4页
专题4.6求数列通项公式(强化训练)-2023-2024学年高二数学上学期重难点突破及混淆易错规避(人教A版2019)(原卷版)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题4.6求数列通项公式题型一周期数列题型二累加累乘法题型三“和”型(一)——与或与题型四“和”型(二)——“”或与题型五“积”型题型六待定系数法及倒数法题型七“同除”法题型八隔项数列题型一 周期数列1.设数列满足,且,则(

)A.-2 B. C. D.32.(多选)已知函数,若数列满足,,则下列说法正确的是(

)A.该数列是周期数列且周期为3 B.该数列不是周期数列C. D.3.数列满足,则数列的第2023项为.4.在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,,公积为4,则.5.已知,,且(n为正整数),则.6.数列满足,,,若,,则.题型二 累加累乘法7.已知数列满足,,则的通项为(

)A.,, B.,,C.,, D.,,8.若数列满足,,则满足不等式的最大正整数为(

)A.28 B.29 C.30 D.319.已知,,则数列的通项公式是(

)A. B. C. D.n10.已知数列中,,则.11.在数列中,,且,则.12.数列满足:,,则的通项公式为.13.在数列中,.(1)求;(2)设,求数列的前项和.题型三 “和”型(一)——与或与14.(多选)已知数列的前项和,则下列说法正确的是(

)A.是递减数列 B.是递增数列C. D.15.已知数列的前项和为,则数列的通项公式为.16.已知数列的前项和为,且,则.17.已知各项都为正数的数列的前项和为,,满足(1)求数列的通项公式;(2)若,求数列的前项和为.18.已知是数列的前项和,且满足,(1)记,求证:数列为等比数列;(2)设,求数列的前项和19.已知数列中,,设为前项和,.求的通项公式;20.已知正项数列的前项和为,且,(且).(1)求数列的通项公式;(2)设数列的前项和为,求证:.题型四 “和”型(二)21.设为数列的前项和,.(1)求数列的通项公式;(2)设,证明:.22.已知数列满足:.(1)求数列的通项公式.(2)记,数列的前项和.若对于任意的,不等式恒成立,求实数的取值范围.23.已知为数列的前项和,且满足.(1)求数列的通项公式;(2)记,求数列的前项和.24.已知数列满足.(1)求的通项公式;(2)在和之间插入个数,使得这个数依次构成一个等差数列,设此等差数列的公差为,求.25.记为数列的前项和,已知.(1)求的通项公式;(2)设,记数列的前项和为,证明:.26.已知数列满足,若,求的通项公式.27.已知数列的前项和为,且.(1)求的通项公式;(2)若,求数列的前项和.题型五 “积”型28.已知数列为非零数列,且满足.(1)求及数列的通项公式;(2)若数列的前项和为,且满足,证明:.29.已知为数列的前项积,若,则数列的前项和(

)A. B. C. D.30.已知为数列的前n项积,且,则.31.已知数列的前项的积记为,且满足(1)证明:数列为等差数列;(2)若求数列的前项和.32.已知是等比数列,其前项之积,(1)求的通项公式,并求的解集;(2)求.33.记是各项均为正数的数列的前项积,已知,.(1)求的通项公式;(2)证明:.题型六 待定系数法及倒数法34.已知数列满足递推关系:,,则(

)A. B. C. D.35.已知数列满足,,,则(

)A. B. C. D.36.在数列中,,,若对于任意的,恒成立,则实数的最小值为.37.已知数列满足,则的通项公式为.38.设数列满足,.(1)求数列的通项公式;(2)求数列的前项和.39.已知数列,且.(1)求的通项公式;(2)设,若的前n项和为,求.题型七 “同除”法40.(多选)已知数列的前n项和为,,且(,2,…),则(

)A. B. C. D.41.已知数列满足,,则数列的通项公式为42.已知数列中,且,则数列的通项公式为.43.已知数列的前项和为,满足,(1)求的通项公式;(2)若,求数列的前20项和.44.已知数列,满足(1)证明:为等差数列,并求通项公式;(2)若,记前n项和为,对任意的正自然数n,不等式恒成立,求实数的范围.45.在数列中,,.求数列的通项公式.题型八 隔项数列46.已知数列满足,,,.(1)求数列的通项公式;(2)证明:数列中的任意三项均不能构成等差数列.47.(多选)对于数列,若,则下列说法正确的是(

)A. B.数列是等差数列C.数列是等差数列 D.48.(多选)已知数列中,,,,则下列说法正确的是(

)A. B.C.是等比数列 D.49.已知数列中,对任意的,都有(1)若为等差数列,求的通项公式;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论