2024届广东省肇庆市端州区地质中学数学八下期末检测模拟试题含解析_第1页
2024届广东省肇庆市端州区地质中学数学八下期末检测模拟试题含解析_第2页
2024届广东省肇庆市端州区地质中学数学八下期末检测模拟试题含解析_第3页
2024届广东省肇庆市端州区地质中学数学八下期末检测模拟试题含解析_第4页
2024届广东省肇庆市端州区地质中学数学八下期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省肇庆市端州区地质中学数学八下期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列函数中,自变量x的取值范围是x≥3的是()A. B. C. D.2.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下列叙述正确的是()A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查3.下列任务中,适宜采用普查方式的是()A.调查某地的空气质量 B.了解中学生每天的睡眠时间C.调查某电视剧在本地区的收视率 D.了解某一天本校因病缺课的学生数4.若a+1有意义,则()A.a≤ B.a<﹣1 C.a≥﹣1 D.a>﹣25.如图,在中,分别是边的中点.已知,则四边形的周长为()A. B. C. D.6.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形7.用配方法解方程x2-8x+9=0时,原方程可变形为()A.(x-4)2=9 B.(x-4)2=7 C.(x-4)2=-9 D.(x-4)2=-78.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.9.如图,在平行四边形ABCD中,对角线相交于点O,AC=AB,E是AB边的中点,G、F为BC上的点,连接OG和EF,若AB=13,BC=10,GF=5,则图中阴影部分的面积为()A.48 B.36 C.30 D.2410.如图,在中,点、分别是、的中点,平分,交于点,若,则的长是()A. B. C. D.11.函数y=x+3中,自变量xA.x>-3 B.x≥-3 C.x12.一个多边形的内角和比其外角和的2倍多180°,那么这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形二、填空题(每题4分,共24分)13.对于实数x,我们[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值范围是______.14.已知一元二次方程:2x2+5x+1=0的两个根分别是x1、x2,则=________.15.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=___________°.16.已知直线y=kx过点(1,3),则k的值为____.17.将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是_____.18.将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.三、解答题(共78分)19.(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?20.(8分)(1)计算:(2)解方程:(2x1)(x3)421.(8分)已知一次函数的图象经过点与点.(1)求这个一次函数的解析式;(2)若点和点在此一次函数的图象上,比较,的大小.22.(10分)如图,已知直线与x轴交于点,与y轴交于点,把直线沿x轴的负方向平移6个单位得到直线,直线与x轴交于点C,与y轴交于点D,连接BC.如图,分别求出直线和的函数解析式;如果点P是第一象限内直线上一点,当四边形DCBP是平行四边形时,求点P的坐标;如图,如果点E是线段OC的中点,,交直线于点F,在y轴的正半轴上能否找到一点M,使是等腰三角形?如果能,请求出所有符合条件的点M的坐标;如果不能,请说明理由.23.(10分)已知,,,求的值.24.(10分)在所给的网格中,每个小正方形的网格边长都为1,按要求画出四边形,使它的四个顶点都在小正方形的顶点上.(1)在网格1中画出面积为20的菱形(非正方形);(2)在网格2中画出以线段为对角线、面积是24的矩形;直接写出矩形的周长.25.(12分)如图,在中,,是上一点,,过点作的垂线交于点.求证:.26.已知y是x的一次函数,且当x=-4,y=9;当x=6时,y=-1.(1)求这个一次函数的解析式和自变量x的取值范围;(2)当x=-时,函数y的值;(3)当y=7时,自变量x的值.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使各函数在实数范围内有意义,必须:A、分式有意义,x﹣1≠0,解得:x≠1;B、二次根式和分式有意义,x﹣1>0,解得x>1;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣1≥0,解得x≥1.故选D.2、B【解题分析】试题解析:A、总体是25000名学生的身高情况,故A错误;B、1200名学生的身高是总体的一个样本,故B正确;C、每名学生的身高是总体的一个个体,故C错误;D、该调查是抽样调查,故D错误.故选B.3、D【解题分析】

调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【题目详解】A.调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;B.了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;C.调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;D.了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确。故选D.【题目点拨】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.4、C【解题分析】

直接利用二次根式的定义计算得出答案.【题目详解】若a+1有意义,则a+1≥0,解得:a≥﹣1.故选:C.【题目点拨】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.5、C【解题分析】

根据三角形中位线定理、线段中点的定义解答.【题目详解】解:∵D,E分别是边BC,CA的中点,∴DE=AB=2,AF=AB=2,∵D,F分别是边BC,AB的中点,∴DF=AC=3,AE=AC=3,∴四边形AFDE的周长=AF+DF+DE+AE=2+3+2+3=10,故选:C.【题目点拨】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6、D【解题分析】

分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【题目详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【题目点拨】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.7、B【解题分析】

方程常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形得到结果,即可做出判断.【题目详解】方程x2-8x+9=0,变形得:x2-8x=-9,配方得:x2-8x+16=7,即(x-4)2=7,故选B.【题目点拨】本题考查了解一元二次方程-配方法,熟练掌握配方法的一般步骤以及完全平方公式的结构特征是解本题的关键.8、B【解题分析】∵y轴表示当天爷爷离家的距离,X轴表示时间又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∴选项B中的图形满足条件.故选B.9、C【解题分析】

连接EO,设EF,GO交于点H,过点H作NM⊥BC与M,交EO于N,过点A作AP⊥BC,将阴影部分分割为△AEO,△EHO,△GHF,分别求三个三角形的面积再相加即可.【题目详解】解:如图连接EO,设EF,GO交于点H,过点H作NM⊥BC与M,交EO于N,∵四边形ABCD为平行四边形,O为对角线交点,∴O为AC中点,又∵E为AB中点,∴EO为三角形ABC的中位线,∴EO∥BC,∴MN⊥EO且MN=即EO=5,∵AC=AB,∴BP=PCBC=5,在Rt△APB中,,∴三角形AEO的以EO为底的高为AP=6,MN==6∴,,∴,故选:C【题目点拨】本题考查了平行四边形的性质、三角形与四边形的面积关系;熟练掌握平行四边形的性质是解决问题的关键.10、B【解题分析】

先证明DE是中位线,由此得到DE∥AB,再根据角平分线的性质得到DF=BD,由此求出答案.【题目详解】∵点、分别是、的中点,∴DE是△ABC的中位线,BD=BC=3,∴DE∥AB,∴∠ABF=∠DFB,∵平分,∴∠ABF=∠CBF,∴∠DFB=∠CBF,∴BD=FD,∴DF=3,故选:B.【题目点拨】此题考查三角形的中位线定理,等腰三角形的性质,角平分线的性质,熟记定理并运用解题是关键.11、B【解题分析】

根据被开方数大于等于0列式进行计算即可得解.【题目详解】根据题意得,x+3⩾0,解得x⩾−3.故选B.12、C【解题分析】

设这个多边形的边数为n,根据多边形内角和公式和外角和定理建立方程求解.【题目详解】设这个多边形的边数为n,由题意得解得:故选C.【题目点拨】本题考查多边形的内角和与外角和,熟记多边形内角和公式,以及外角和360°,是解题的关键.二、填空题(每题4分,共24分)13、46≤x<1【解题分析】分析:根据题意得出5≤<6,进而求出x的取值范围,进而得出答案.详解:∵[x]表示不大于x的最大整数,[]=5,∴5≤<6解得:46≤x<1.故答案为46≤x<1.点睛:本题主要考查了不等式组的解法,得出x的取值范围是解题的关键.14、【解题分析】

依据一元二次方程根与系数的关系:x1+x2=-,x1·x2=,即可求出.【题目详解】因为2x2+5x+1=0,所有a=2、b=5、c=1,所以x1+x2=-,x1·x2=,有因为=x1x2(x1+x2),所以=-×=【题目点拨】本题考查一元二次方程根与系数之间的关系,熟练掌握相关知识是解的关键.15、1【解题分析】

根据∠BAD和菱形邻角和为180°的性质可以求∠ABC的值,根据菱形对角线即角平分线的性质可以求得∠ABO的值,又由BE=BO可得∠BEO=∠BOE,根据∠BOE和菱形对角线互相垂直的性质可以求得∠EOA的大小.【题目详解】解:∵∠BAD=80°,菱形邻角和为180°

∴∠ABC=100°,

∵菱形对角线即角平分线

∴∠ABO=50°,

∵BE=BO

∴∠BEO=∠BOE==65°,

∵菱形对角线互相垂直

∴∠AOB=90°,

∴∠AOE=90°-65°=1°,

故答案为1.【题目点拨】本题考查了菱形对角线互相垂直平分且平分一组对角的性质,考查了等腰三角形底角相等的性质,本题中正确的计算∠BEO=∠BOE=65°是解题的关键.16、1【解题分析】

将点(1,1)代入函数解析式即可解决问题.【题目详解】解:∵直线y=kx过点(1,1),

∴1=k,

故答案为:1.【题目点拨】本题主要考查了一次函数图象上点的坐标特征,解决问题的关键是将点的坐标代入解析式,利用方程解决问题.17、y=-2x+1【解题分析】

根据一次函数图象平移的规律即可得出结论.【题目详解】解:正比例函数y=-2x的图象向上平移1个单位,则平移后所得图象的解析式是:y=-2x+1,故答案为y=-2x+1.【题目点拨】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.18、126°【解题分析】

直接利用翻折变换的性质以及平行线的性质分析得出答案.【题目详解】解:如图,由题意可得:∠ABC=∠BCE=∠BCA=27°,

则∠ACD=180°-27°-27°=126°.

故答案为:126°.【题目点拨】本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.三、解答题(共78分)19、答案见解析【解题分析】试题分析:(2)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤2和x>2两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(2)由题意知:当0<x≤2时,y甲=22x;当2<x时,y甲=22+25(x﹣2)=25x+2.y乙=26x+3;∴,;(2)①当0<x≤2时,令y甲<y乙,即22x<26x+3,解得:0<x<;令y甲=y乙,即22x=26x+3,解得:x=;令y甲>y乙,即22x>26x+3,解得:<x≤2.②x>2时,令y甲<y乙,即25x+2<26x+3,解得:x>3;令y甲=y乙,即25x+2=26x+3,解得:x=3;令y甲>y乙,即25x+2>26x+3,解得:0<x<3.综上可知:当<x<3时,选乙快递公司省钱;当x=3或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>3时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.20、(1);(2),.【解题分析】

(1)先化成最简二次根式,再合并其中的同类二次根式即可;(2)先化成一元二次方程的一般形式,再用公式法求解.【题目详解】解:(1)===.(2)原方程可变形为:由一元二次方程的求根公式,得:,∴,.∴原方程的解为:,.【题目点拨】本题考查了二次根式的混合运算和一元二次方程的解法,解题的关键是熟知二次根式的混合运算法则和一元二次方程的求解方法.21、(1)y=2x-1;(2)m<n.【解题分析】

(1)设一次函数解析式为y=kx+b,将已知两点坐标代入得到方程组,求出方程组的解得到k与b的值,即可确定出一次函数解析式;(2)利用一次函数图象的增减性进行解答.【题目详解】(1)设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图象经过点(3,5)与(-4,-9),∴,解得,∴这个函数的解析式为y=2x-1;(2)∵k=2>0,∴y随x的增大而增大.∵a<a+1,∴m<n.【题目点拨】本题考查待定系数法求一次函数解析式,属于比较基础的题,注意待定系数法的掌握,待定系数法是中学数学一种很重要的解题方法.22、(1);;(2);(3)M

点坐标为,,,.【解题分析】

用待定系数法可求直线的解析式,平移可得直线的解析式由四边形DCBP是平行四边形,可得,,根据两点公式可求P的坐标.分,,三种情况讨论,根据勾股定理可求M的坐标.【题目详解】设直线的解析式为,且过,,,解得:,,解析式,把直线沿x轴的负方向平移6个单位得到直线,直线的解析式;设,直线与y轴交于D点,交x轴于C点,,,,,,四边形DCBP是平行四边形,,,,,不合题意舍去,;点E是线段OC的中点,,,,,,,在中,,,,,当点M与

点O重合时,即F

,当时,是等腰三角形,当时,则,

或,当时,设M

,,,,综上所述:M

点坐标为,,,.【题目点拨】本题考查了四边形的综合题,待定系数法求一次函数解析式,平行四边形的性质,等腰三角形的性质,利用分类思想解决问题是本题的关键.23、78.【解题分析】

原式提取公因式,再利用完全平方公式化简,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论