2024届山东省莱芜市实验学校数学八年级第二学期期末考试模拟试题含解析_第1页
2024届山东省莱芜市实验学校数学八年级第二学期期末考试模拟试题含解析_第2页
2024届山东省莱芜市实验学校数学八年级第二学期期末考试模拟试题含解析_第3页
2024届山东省莱芜市实验学校数学八年级第二学期期末考试模拟试题含解析_第4页
2024届山东省莱芜市实验学校数学八年级第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省莱芜市实验学校数学八年级第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图是一次函数y=kx+b的图象,则k、b的符号是()A.k>0,b<0 B.k<0,b>0 C.k<0,b<0 D.k>0,b>02.下列是一次函数的是()A. B. C. D.3.已知点P(1,-3)在反比例函数的图象上,则的值是A.3 B.-3 C. D.4.如图,已知一次函数的图象与轴,轴分别交于点(2,0),点(0,3).有下列结论:①关于的方程的解为;②当时,;③当时,.其中正确的是()A.①② B.①③ C.②③ D.①③②5.若点A(-3,y1),B(1,y2)都在直线y=12x+2上,则yA.y1<y2 B.y1=y2 C.y6.下列说法:①平方等于64的数是8;②若a,b互为相反数,ab≠0,则;③若,则的值为负数;④若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为()A.0个 B.1个 C.2个 D.3个7.如图,四边形和四边形是以点为位似中心的位似图形,若,四边形的面积等于4,则四边形的面积为()A.3 B.4 C.6 D.98.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图像经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三9.点()在函数y=2x-1的图象上.A.(1,3) B.(−2.5,4) C.(−1,0) D.(3,5)10.下列方程中,有实数根的方程是()A.x4+16=0 B.x2+2x+3=0 C. D.11.下列各组线段中,能够组成直角三角形的一组是(

)A.1,2,3 B.2,3,4 C.4,5,6 D.1,,12.如图,矩形中,,,点从点出发,沿向终点匀速运动,设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是()A. B. C. D.二、填空题(每题4分,共24分)13.若点与点关于原点对称,则_______________.14.某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.15.已知锐角,且sin=cos35°,则=______度.16.关于的一元二次方程有两个不相等的实数根,则实数的取值范围为__________.17.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环25.14.74.55.1请你根据表中数据选一人参加比赛,最合适的人选是________.18.当x_____时,分式有意义.三、解答题(共78分)19.(8分)为了方便居民低碳出行,我市公共自行车租赁系统(一期)试运行.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点、、、在伺一条直线上,测量得到座杆,,,且.求点到的距离.(结果精确到.参考数据:,,)20.(8分)某校要设计一座高的雕像(如图),使雕像的点(肚脐)为线段(全身)的黄金分割点,上部(肚脐以上)与下部(肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到)米.(,结果精确到).21.(8分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.(1)当t为何值时,四边形ABDE是矩形;(2)当t为何值时,DE=CO?(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.22.(10分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC,求□ABCD的面积.23.(10分)如图,四边形为正方形.在边上取一点,连接,使.(1)利用尺规作图(保留作图痕迹):分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点,则;(2)在前面的条件下,取中点,过点的直线分别交边、于点、.①当时,求证:;②当时,延长,交于点,猜想与的数量关系,并说明理由.24.(10分)如图,中,,,在AB的同侧作正、正和正,求四边形PCDE面积的最大值.25.(12分)《九章算术》“勾股”章有一题:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”译文为:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离三尺,问原处还有多高的竹子?请解答上述问题.26.(1)计算:;(2)解方程:.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】试题分析:根据一次函数的图像与性质,由图像向上斜,可知k>0,由与y轴的交点,可知b>0.故选:D点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.2、B【解题分析】

根据一次函数的定义条件进行逐一分析即可.【题目详解】A.中自变量次数不为1,不是一次函数;B.,是一次函数;C.中自变量次数不为1,不是一次函数;D.中没有自变量次数不为1,不是一次函数.故选:B【题目点拨】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3、B【解题分析】根据点在曲线上,点的坐标满足方程的关系,将P(1,-1)代入,得,解得k=-1.故选B.4、A【解题分析】

根据一次函数图象的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【题目详解】由图象得:①关于x的方程kx+b=0的解为x=2,故①正确;②当x>2时,y<0,故②正确;③当x<0时,y>3,故③错误;故选:A【题目点拨】本题考查了一次函数图象的性质及一次函数与一元一次方程的关系,对于任意一个以x为未知数的一元一次方程,它都可以转化为kx+b=0(k≠0)的形式,解一元一次方程相当于在某个一次函数的函数y=kx+b值为0时,求自变量的值.5、A【解题分析】

先根据直线y=12x+1【题目详解】∵直线y=12x+1,k=12>∴y随x的增大而增大,又∵-3<1,∴y1<y1.故选A.【题目点拨】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.6、B【解题分析】

根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答.【题目详解】①平方等于64的数是±8;②若a,b互为相反数,ab≠0,则;③若,可得a≥0,则的值为负数或0;④若ab≠0,当a>0,b>0时,=1+1=2;当a>0,b<0时,=1-1=0;当a<0,b>0时,=-1+1=0;当a<0,b<0时,=-1-1=-2;所以的取值在0,1,2,-2这四个数中,不可取的值是1.综上,正确的结论为②,故选B.【题目点拨】本题考查了平方的计算、相反数的定义及绝对值的性质,熟练运用相关知识是解决问题的关键.7、D【解题分析】

利用位似的性质得到AD:A'D'=OA:OA'=2:3,再利用相似多边形的性质得到得到四边形A'B'C'D'的面积.【题目详解】解:∵四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,AD:A'D'=OA:04'=2:3,∴四边形ABCD的面积:四边形A'B'C'D'的面积=4:9,又∵四边形ABCD的面积等于4,∴四边形A'B'C'D'的面积为9.故选:D【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫位似中心,注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行(或共线)8、A【解题分析】试题分析:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∴一次函数y=kx+k的图像经过二、三、四象限.故选A.考点:一次函数的性质.9、D【解题分析】

将各点坐标代入函数y=2x−1,依据函数解析式是否成立即可得到结论.【题目详解】解:A.当时,,故不在函数的图象上.B.当时,,故不在函数的图象上.C.当时,,故不在函数的图象上.D.当时,,故在函数的图象上.故选:D.【题目点拨】本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.10、C【解题分析】

利用在实数范围内,一个数的偶数次幂不能为负数对A进行判断;利用判别式的意义对B进行判断;利用分子为0且分母不为0对C进行判断;利用非负数的性质对D进行判断.【题目详解】解:A、因为x4=﹣16<0,所以原方程没有实数解,所以A选项错误;B、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B选项错误;C、x2﹣4=0且x﹣2≠0,解得x=﹣2,所以C选项正确;D、由于x=0且x﹣1=0,所以原方程无解,所以D选项错误.故选:C.【题目点拨】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则11、D【解题分析】试题分析:A.,不能组成直角三角形,故错误;B.,不能组成直角三角形,故错误;C.,不能组成直角三角形,故错误;D.,能够组成直角三角形,故正确.故选D.考点:勾股定理的逆定理.12、C【解题分析】

首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的长度一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【题目详解】解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选:C.【题目点拨】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.二、填空题(每题4分,共24分)13、【解题分析】

直接利用关于原点对称点的性质得出a,b的值.【题目详解】解:∵点A(a,1)与点B(−3,b)关于原点对称,∴a=3,b=−1,∴ab=3-1=.故答案为:.【题目点拨】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的关系是解题关键.14、144(1﹣x)2=1.【解题分析】

设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.【题目详解】设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,根据题意,得144(1﹣x)2=1.故答案为144(1﹣x)2=1.【题目点拨】本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.15、1【解题分析】

对于任意锐角A,有sinA=cos(90°-A),可得结论.【题目详解】解:∵sinα=cos35°,∴α=90°-35°=1°,故答案为:1.【题目点拨】此题考查互余两角的三角函数,关键是根据互余两角的三角函数的关系解答.16、m<【解题分析】

根据一元二次方程有两个不相等的实数根可得△=(-3)2−4m>0,求出m的取值范围即可.【题目详解】解:∵一元二次方程有两个不相等的实数根,∴△=(-3)2−4m>0,∴m<,故答案为:m<.【题目点拨】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根,此题难度不大.17、丙【解题分析】分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵=5.1,=4.7,=4.5,=5.1,∴=>>,∴最合适的人选是丙.故答案为:丙.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18、≠.【解题分析】

要使分式有意义,分式的分母不能为1.【题目详解】因为4x+5≠1,所以x≠-.故答案为≠−.【题目点拨】解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.三、解答题(共78分)19、58【解题分析】

作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【题目详解】解:∵CE=15cm,CD=30cm,AD=15cm.∴AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97≈58(cm).答:点E到AB的距离约为58cm.【题目点拨】本题考查的是解直角三角形的知识,正确找出辅助线、掌握锐角三角函数的概念是解题的关键.20、【解题分析】

设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.根据雕像上部与下部的高度之比等于下部与全部的高度比,列出方程求解即可.【题目详解】解:设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.

依题意,得解得(不合题意,舍去).经检验,是原方程的根.雕像下部设计的高度应该为:1.236m故答案为:1.236m【题目点拨】本题考查了黄金分割的应用,利用黄金分割中成比例的对应线段是解决问题的关键.21、(1)t=;(2)t=6;(3)S=t2﹣13t.【解题分析】

(1)根据矩形的判定定理列出关系式,计算即可;(2)根据平行四边形的判定定理和性质定理解答;(3)分点E在OA上和点E在AB上两种情况,根据三角形的面积公式计算即可.【题目详解】(1)∵点C的坐标为(2,8),点A的坐标为(26,0),∴OA=26,BC=24,AB=8,∵D(E)点运动的时间为t秒,∴BD=t,OE=3t,当BD=AE时,四边形ABDE是矩形,即t=26﹣3t,解得,t=;(2)当CD=OE时,四边形OEDC为平行四边形,DE=OC,即24﹣t=3t,解得,t=6;(3)如图1,当点E在OA上时,AE=26﹣3t,则S=×AE×AB=×(26﹣3t)×8=﹣12t+104,当点E在AB上时,AE=3t﹣26,BD=t,则S=×AE×DB=×(3t﹣26)×t=t2﹣13t.【题目点拨】此题考查四边形综合题,解题关键在于利用矩形的判定定理和平行四边形的判定定理和性质来解答22、48【解题分析】

根据平行四边形的性质可得BC=AD=8,然后根据垂直的定义可得∠ACB=90°,再利用勾股定理即可求出AC,最后利用平行四边形的面积公式求面积即可.【题目详解】解:∵四边形ABCD为平行四边形∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ACB中,AC==6∴S□ABCD=BC·AC=48【题目点拨】此题考查的是平行四边形的性质、勾股定理和求平行四边形的面积,掌握平行四边形的对应边相等、利用勾股定理解直角三角形和平行四边形的面积公式是解决此题的关键.23、(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析;【解题分析】

(1)按照题意,尺规作图即可;(2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答;(3)NQ=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论