2024届浙江省绍兴市暨阳八年级数学第二学期期末经典模拟试题含解析_第1页
2024届浙江省绍兴市暨阳八年级数学第二学期期末经典模拟试题含解析_第2页
2024届浙江省绍兴市暨阳八年级数学第二学期期末经典模拟试题含解析_第3页
2024届浙江省绍兴市暨阳八年级数学第二学期期末经典模拟试题含解析_第4页
2024届浙江省绍兴市暨阳八年级数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省绍兴市暨阳八年级数学第二学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数y=kx(k≠0,x>0)的图象上,点D的坐标为(﹣4,1),则A.54 B.-54 C.42.如图,菱形ABCD中,∠ABC=60°,AB=6,则BD=()A.3 B.23 C.333.下列各式中,y不是x的函数的是A. B. C. D.4.下列平面图形中,不是轴对称图形的是()A. B. C. D.5.已知函数y=(k-3)x,y随x的增大而减小,则常数k的取值范围是()A.k>3 B.k<3 C.k<-3 D.k<06.在△ABC中,∠C=90°,AB=c,∠A=30°,则AC=()A.c B.c C.2c D.c7.若实数a、b满足ab<0,则一次函数y=ax+b的图象可能是()A. B.C. D.8.如图,在菱形ABCD中,对角线AC,BD交于点O,AO=3,∠ABC=60°,则菱形ABCD的面积是()A.18 B.183 C.36 D.3639.如图,点在正方形外,连接,过点作的垂线交于,若,则下列结论不正确的是()A. B.点到直线的距离为C. D.10.如图,P为□ABCD对角线BD上一点,△ABP的面积为S1,△CBP的面积为S2,则S1和S2的关系为()A.S1>S2 B.S1=S2 C.S1<S2 D.无法判断二、填空题(每小题3分,共24分)11.如图,正方形的边长为12,点、分别在、上,若,且,则______.12.如图,在△ABE中,∠E=30°,AE的垂直平分线MN交BE于点C,且AB=AC,则∠B=________.13.已知y=(k﹣1)x+k2﹣1是正比例函数,则k=_____.14.若式子+有意义,则x的取值范围是____.15.若是一个正整数,则正整数m的最小值是___________.16.在一个不透明的盒子中装有2个白球和3个红球这些球除了颜色外无其他差别现从这个盒子中任意摸出1个球,那么摸到1个红球的概率是_________.17.如图,将菱形纸片ABCD折叠,使点C,D的对应点C',D'都落在直线AB上,折痕为EF,若EF=1.AC'=8,则阴影部分(四边形ED'BF)的面积为________

。18.矩形、菱形和正方形的对角线都具有的性质是_____.三、解答题(共66分)19.(10分)解一元二次方程.(1)(2)20.(6分)如图,在四边形ABCD中,∠ABC=90°,E、F分别是AC、CD的中点,AC=8,AD=6,∠BEF=90°,求BF的长.21.(6分)如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为.小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.22.(8分)定义:如果一条直线与一条曲线有且只有一个交点,且曲线位于直线的同旁,称之为直线与曲线相切,这条直线叫做曲线的切线,直线与曲线的唯一交点叫做切点.(1)如图,在平面直角坐标系中,点为坐标原点,以点为圆心,5为半径作圆,交轴的负半轴于点,求过点的圆的切线的解析式;(2)若抛物线()与直线()相切于点,求直线的解析式;(3)若函数的图象与直线相切,且当时,的最小值为,求的值.23.(8分)画出函数y=-2x+1的图象.24.(8分)如图,中,.(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)(2)在(1)的条件下,求证:.25.(10分)如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.(1)△P′PB是三角形,△PP′A是三角形,∠BPC=°;(2)利用△BPC可以求出△ABC的边长为.如图丙,在正方形ABCD内有一点P,且PA=,BP=,PC=1;(3)求∠BPC度数的大小;(4)求正方形ABCD的边长.26.(10分)在正方形中,点是对角线上的两点,且满足,连接.试判断四边形的形状,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

由于点B的坐标不能求出,但根据反比例函数的几何意义只要求出矩形OEBF的面积也可,依据矩形的性质发现S矩形OGDH=S矩形OEBF,而S矩形OGDH可通过点D(﹣4,1)转化为线段长而求得.,在根据反比例函数的所在的象限,确定k的值即可.【题目详解】解:如图,根据矩形的性质可得:S矩形OGDH=S矩形OEBF,∵D(﹣4,1),∴OH=4,OG=1,∴S矩形OGDH=OH•OG=4,设B(a,b),则OE=a,OF=﹣b,∴S矩形OEBF,=OE•OF=﹣ab=4,又∵B(a,b)在函数y=kx(k≠0,x>∴k=ab=﹣4故选:D.【题目点拨】考查矩形的性质,反比例函数图象上点的坐标特征以及灵活地将坐标与线段长的相互转化.2、D【解题分析】

利用菱形的性质可求∠ABD=30°,在30°直角三角形中利用勾股定理可求BD的一半长,则BD可求.【题目详解】解:∵四边形ABCD是菱形,设AC与BD交于点O,∠ABO=12∠ABC=30°∴AO=3,BO=6∴BD=2BO=6故选:D.【题目点拨】本题主要考查了菱形的性质,解决菱形中线段的长度一般借助菱形的对角线互相垂直,在直角三角形中求解.3、D【解题分析】

在运动变化过程中,有两个变量x和y,对于x的每一个值y都有唯一确定的值与之对应,那么y是x的函数,x是自变量.【题目详解】A.,B.,C.,对于x的每一个值,y都有唯一确定的值与之对应,符合函数的定义,不符合题意,D.,对于x的每一个值,y都有两个确定的值与之对应,故不是函数,本选项符合题意.故选:D【题目点拨】本题考核知识点:函数.解题关键点:理解函数的定义.4、A【解题分析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.5、B【解题分析】

根据一次项系数小于0时,y随x的增大而减小,即可解题.【题目详解】解:由题可知k-3<0,解得:k<3,故选B.【题目点拨】本题考查了一次函数的增减性,属于简单题,熟悉概念是解题关键.6、B【解题分析】

根据直角三角形的性质得到BC=AB=c,根据勾股定理计算即可.【题目详解】解:∵∠C=90°,∠A=30°,∴BC=AB=c,由勾股定理得,AC==,故选:B.【题目点拨】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.7、B【解题分析】分析:利用ab<0,得到a<0,b>0或b<0,a>0,然后根据一次函数图象与系数的关系进行判断.详解:因为ab<0,得到a<0,b>0或b<0,a>0,当a<0,b>0,图象经过一、二、四象限;当b<0,a>0,图象经过一、三、四象限,故选B.点睛:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).8、B【解题分析】

由菱形的性质可求AC,BD的长,由菱形的面积公式可求解.【题目详解】∵四边形ABCD是菱形∴AO=CO=3,BO=DO=33,AC⊥BD∴AC=6,BD=63∴菱形ABCD的面积=12故选B.【题目点拨】本题考查了菱形的性质,熟练运用菱形面积公式是本题的关键.9、B【解题分析】

A、首先利用已知条件根据边角边可以证明△APD≌△AEB;B、利用全等三角形的性质和对顶角相等即可解答;C、由(1)可得∠BEF=90°,故BE不垂直于AE过点B作BP⊥AE延长线于P,由①得∠AEB=135°所以∠PEB=45°,所以△EPB是等腰Rt△,于是得到结论;D、根据勾股定理和三角形的面积公式解答即可.【题目详解】解:在正方形ABCD中,AB=AD,∵AF⊥AE,∴∠BAE+∠BAF=90°,又∵∠DAF+∠BAF=∠BAD=90°,∴∠BAE=∠DAF,在△AFD和△AEB中,∴△AFD≌△AEB(SAS),故A正确;∵AE=AF,AF⊥AE,∴△AEF是等腰直角三角形,∴∠AEF=∠AFE=45°,∴∠AEB=∠AFD=180°−45°=135°,∴∠BEF=135°−45°=90°,∴EB⊥ED,故C正确;∵AE=AF=,∴FE=AE=2,在Rt△FBE中,BE=,∴S△APD+S△APB=S△APE+S△BPE,=,故D正确;过点B作BP⊥AE交AE的延长线于P,∵∠BEP=180°−135°=45°,∴△BEP是等腰直角三角形,∴BP=,即点B到直线AE的距离为,故B错误,故选:B.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.10、B【解题分析】分析:根据平行四边形的性质可得点A、C到BD的距离相等,再根据等底等高的三角形的面积相等.详解:∵在□ABCD中,点A、C到BD的距离相等,设为h.∴S1=S△ABP=BP,S2=S△CPB=BP.∴S1=S2,故选:B.点睛:本题主要考查的平行四边形的性质,关键在于理解等底等高的三角形的面积相等的性质.二、填空题(每小题3分,共24分)11、【解题分析】

首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易证△GCF≌△ECF,利用勾股定理可得DF,求出AF,设BE=x,利用GF=EF,解得x,再利用勾股定理可得CE.【题目详解】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵DF=,AB=AD=12,∴AF=12−4=8,设BE=x,则AE=12−x,EF=GF=4+x,在Rt△AEF中,由勾股定理得:(12−x)2+82=(4+x)2,解得:x=6,∴BE=6,∴CE=,故答案为.【题目点拨】本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.12、60°【解题分析】分析:根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据等腰三角形的性质得到∠B即可.详解:∵MN是AE的垂直平分线,∴CA=CE,∴∠CAE=∠E,∴∠ACB=2∠E,∵AB=AC,∴∠B=∠ACB=2∠E=60°,故答案为:60°点睛:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13、-1【解题分析】【分析】根据正比例函数的定义可知k-1≠0,常数项k2-1=0,由此即可求得答案.【题目详解】∵y=(k-1)x+k2-1是正比例函数,∴k-1≠0,k2-1=0,解得k≠1,k=±1,∴k=-1,故答案为-1.【题目点拨】本题考查了正比例函数的定义,熟知正比例函数y=kx中一次项系数中不为0,常数项等于0是解题的关键.14、2≤x≤3【解题分析】

根据二次根式有意义的条件得到不等式组,解不等式组即可.【题目详解】根据题意得;解得:2≤x≤3故答案为:2≤x≤3【题目点拨】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数要大于等于0是关键.15、5【解题分析】

由于是一个正整数,所以根据题意,也是一个正整数,故可得出m的值.【题目详解】解:∵是一个正整数,∴根据题意,是一个最小的完全平方数,∴m=5,故答案为5.【题目点拨】本题主要考查了二次根式的定义,正确对二次根式进行化简并找到被开方数是解答本题的关键.16、【解题分析】

用红球的个数除以总球的个数即可得出答案.【题目详解】解:∵不透明的盒子中装有2个白球和3个红球,共有5个球,

∴这个盒子中任意模出1个球、那么摸到1个红球的概率是;

故答案为:.【题目点拨】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17、10【解题分析】

根据对称图形的特点,算出BC和AD'的长,则D'B的长可求,然后过E作EH垂直【题目详解】解:如图,过E作EH⊥AC由对称图形的特征可知:EF=AB=∴A∴A∵AB+B∴B∴B又∵EA=E∴EH=ES故答案为:10【题目点拨】本题考查了菱形的性质,对称的性质及勾股定理,对称的两个图形对应边相等,灵活应用对称的性质求线段长是解题的关键.18、对角线互相平分【解题分析】

先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.【题目详解】解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故答案为对角线互相平分.【题目点拨】本题主要考查了矩形、菱形、正方形的性质,解题的关键是熟知三者对角线的性质.三、解答题(共66分)19、(1)x1=3,x2=6;(2)x1=2+,x2=2-.【解题分析】

(1)利用因式分解法即可求解;(2)利用配方法解方程即可求解.【题目详解】(1)∴∴∴,,解得:x1=3,x2=6;(2)∴∴,∴,解得x1=2+,x2=2-.【题目点拨】此题分别考查了一元二次方程的几种解法,解题的关键是根据不同的方程的形式选择最佳方法解决问题.20、2【解题分析】

根据三角形中位线定理和直角三角形斜边上的中线推知BE=4,EF=1,再由勾股定理计算BF的长度即可.【题目详解】∵E、F分别是AC、CD的中点,∴EF=AD,∵AD=6,∴EF=1.∵∠ABC=90°,E是CA的中点,∴BE=AC=4,∵∠BEF=90°,∴BF===2.【题目点拨】本题考查了直角三角形斜边上的中线,根据三角形中位线定理和直角三角形斜边上的中线推知△BEF两直角边的长是解题的关键.21、游戏公平【解题分析】

直接利用概率公式求得指针指向蓝色区域和红色区域的概率,进而比较得出答案.【题目详解】解:∵红色区域扇形的圆心角为,∴蓝色区域扇形的圆心角为60°+60°,,,∴,所以游戏公平.故答案为:游戏公平.【题目点拨】本题考查游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22、(1);(2);(3)1或【解题分析】

(1)连接,由、可求,即.因为过点的切线,故有,再加公共角,可证,由对应边成比例可求的长,进而得点坐标,即可求直线解析式.(2)分别把点代入抛物线和直线解析式,求得抛物线解析式为,直线解析式可消去得.由于直线与抛物线相切(只有一个交点),故联立解析式得到关于的方程有两个相等的实数根,即△,即求得的值.(3)因为二次函数图象与直线相切,所以把二次函数和直线解析式联立,得到关于的方程有两个相等是实数根,即△,整理得式子,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线.分类讨论对称轴在左侧、中间、右侧三种情况,画出图形得:①当对称轴在左侧即时,由图象可知时随的增大而增大,所以时取得最小值,把、代入得到关于的方程,方程无解;②当对称轴在范围内时,时即取得最小值,得方程,解得:;③当对称轴在2的右侧即时,由图象可知时随的增大而减小,所以时取得最小值,把、代入即求得的值.【题目详解】解:(1)如图1,连接,记过点的切线交轴于点,,,设直线解析式为:,解得:过点的的切线的解析式为;(2)抛物线经过点,解得:抛物线解析式:直线经过点,可得:直线解析式为:直线与抛物线相切关于的方程有两个相等的实数根方程整理得:△解得:直线解析式为;(3)函数的图象与直线相切关于的方程有两个相等的实数根方程整理得:△整理得:,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线当时,的最小值为①如图2,当时,在时随的增大而增大时,取得最小值,方程无解;②如图3,当时,时,取得最小值,解得:;③如图4,当时,在时随的增大而减小时,取得最小值,解得:,(舍去)综上所述,的值为1或.【题目点拨】本题考查了圆的切线的性质,相似三角形的判定和性质,一元二次方程的解法及根与系数的关系,二次函数的图象与性质.第(3)题的解题关键是根据相切列得方程并得到含、的等式,转化为关于的二次函数,再根据画图讨论抛物线对称轴情况进行解题.23、图象如图所示,见解析.【解题分析】

根据一次函数的图象是直线,只需确定直线上两个特殊点即可.【题目详解】解:函数经过点,.图象如图所示:【题目点拨】本题考查一次函数的图象的作法,解题的关键是一次函数的图象是直线,确定两点即可画出直线.24、(1)见解析;(2)见解析.【解题分析】

(1)作出∠ABC的角平分线BM交线段AC于P,利用角平分线上的点到角的两边的距离相等可知点P即为所求;(2)过点P作PN⊥BC,交BC于点N,通过证明≌得到AB=BN,且易得PN=NC,由BC=BN+NC,等线段转化即可得证.【题目详解】解:(1)如图:利用尺规作图,作出∠ABC的角平分线BM交线段AC于P,则点到边的距离等于的长;(2)如图,过点P作PN⊥BC,交BC于点N,由(1)可知:PA=PN,在和中,,∴≌(HL),∴AB=BN,∵,∴∠C=45°,又∵∠PNC=90°∴∠NPC=∠C=45°,∴PN=NC,∴BC=BN+NC=AB+PN=AB+AP.【题目点拨】本题主要考查了利用尺规作图作一个角的角平分线,角平分线的性质及直角三角形全等的判定.熟练掌握角平分线的性质是解决本题的关键.25、(1)等边直角150°;(2);(3)135°;(4).【解题分析】

(1)将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,(2)过点B作BM⊥AP′,交AP′的延长线于点M,进而求出等边△ABC的边长为,问题得到解决.(3)求出,根据勾股定理的逆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论