



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时两个计数原理的应用A级必备知识基础练1.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通,现发现A,B间电路不通,则焊接点脱落的不同情况有()种.A.9 B.11 C.13 D.152.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点(a,b)的坐标,能够确定不在x轴上的点的个数是()A.100 B.90 C.81 D.723.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有()A.4种 B.5种 C.6种 D.7种4.某城市的号码由七位升为八位(首位数字均不为零),则该城市可增加的部数是()A.9×8×7×6×5×4×3×2B.8×97C.9×107D.8.1×1075.某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲、乙不参加同一项,则不同的报名方法种数为.
6.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个.
7.五个工程队承建某项工程的5个不同的子项目,每个工程队承建1个,其中甲工程队不能承建1号子项目,则不同的承建方案有种.
8.某文艺小组有20人,其中会唱歌的有14人,会跳舞的有10人,从中选出会唱歌与会跳舞的各1人参加演出,且既会唱歌又会跳舞的至多选1人,有多少种不同的选法?9.在3000到8000之间有多少个无重复数字的奇数?B级关键能力提升练10.一植物园的参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线共有()A.6种 B.8种 C.36种 D.48种11.(多选题)已知集合A={1,2,3,4},m,n∈A,则对于方程x2m+y2nA.可表示3个不同的圆B.可表示6个不同的椭圆C.可表示3个不同的双曲线D.表示焦点位于x轴上的椭圆有3个12.现有某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则不同的选取种数为,m,n都取到奇数的概率为.
13.(1)从5种颜色中选出3种颜色,涂在一个四棱锥的五个顶点上,每一个顶点涂一种颜色,并使同一条棱上的两个顶点异色,求不同的涂色方法数;(2)从5种颜色中选出4种颜色,涂在一个四棱锥的五个顶点上,每个顶点上涂一种颜色,并使同一条棱上的两个顶点异色,求不同的涂色方法数.C级学科素养创新练14.现有五种不同的颜色,要对图形中的四个部分进行着色,要求有公共边的两块不能用同一种颜色,不同的涂色方法有种.
15.称子集A⊆M={1,2,3,4,5,6,7,8,9,10,11}是“好的”,如果它有下述性质——“若2k∈A,则2k1∈A且2k+1∈A(k∈N)”(空集和M都是“好的”),则M中有多少个包含2个偶数的“好的”子集?第2课时两个计数原理的应用1.C按照可能脱落的焊接点的个数分类讨论:若脱落1个,则有1,4,共两种情况;若脱落2个,则有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;若脱落3个,则有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种情况;若脱落4个,则有(1,2,3,4),共1种情况.综上共有2+6+4+1=13种情况.故选C.2.C分两步,第1步选b,因为b≠0,所以有9种不同的选法;第2步选a,因为a≠b,所以也有9种不同的选法.由分步乘法计数原理知共有9×9=81(个)点满足要求.3.A三堆中“最多”的一堆为5个,其他两堆总和为5,每堆至少1个,只有2种分法,即1和4,2和3两种方法.三堆中“最多”的一堆为4个,其他两堆总和为6,每堆至少1个,只有2种分法,即2和4,3和3两种方法.所以不同的分法共有2+2=4(种).4.D号码是七位数字时,该城市可安装9×106部,同理升为八位时为9×107部,所以可增加的部数是9×1079×106=8.1×107.5.54甲有三个培训可选,甲、乙不参加同一项,所以乙有两个培训可选,丙、丁各有三个培训可选,根据分步乘法计数原理,不同的报名方法种数为3×2×3×3=54.6.17当A={1}时,B有231=7(种)情况;当A={2}时,B有221=3(种)情况;当A={3}时,B有1种情况;当A={1,2}时,B有221=3(种)情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况,所以集合M的“子集对”共有7+3+1+3+3=17(个).7.96完成承建任务可分五步.第1步,安排1号子项目,有4种不同的承建方案;第2步,安排2号子项目,有4种不同的承建方案;第3步,安排3号子项目,有3种不同的承建方案;第4步,安排4号子项目,有2种不同的承建方案;第5步,安排5号子项目,有1种承建方案.由分步乘法计数原理得,共有4×4×3×2×1=96(种)不同的承建方案.8.解易知既会唱歌又会跳舞的有4人,只会唱歌的有10人,只会跳舞的有6人.第1类,首先从只会唱歌的10人中选出1人,有10种不同的选法,从会跳舞的10人中选出1人,有10种不同的选法,共有10×10=100(种)不同的选法;第2类,从既会唱歌又会跳舞的4人中选1人,再从只会跳舞的6人中选1人,共有4×6=24(种)不同的选法.所以一共有100+24=124(种)不同的选法.9.解分两类:一类是以3,5,7为首位的四位奇数,可分三步完成:先排千位有3种方法,再排个位有4种方法,最后排中间的两个数有8×7种方法,所以满足要求的数有3×4×8×7=672(个).另一类是首位是4或6的四位奇数,也可分三步完成,满足要求的数有2×5×8×7=560(个).由分类加法计数原理得,满足要求的数共有672+560=1232(个).10.D选择参观路线分步完成:第一步选择三个“环形”路线中的一个,有3种方法,再按逆时针或顺时针方向参观有2种方法;第二步选择余下两个“环形”路线中的一个,有2种方法,也按逆时针或顺时针方向参观有2种方法;最后一个“环形”路线,也按逆时针或顺时针方向参观有2种方法.由分步乘法计数原理知,共有3×2×2×2×2=48(种)方法,故选D.11.ABD当m=n>0时,方程x2m+y2n=1表示圆,故有3个,选项A正确;当m≠n且m,n>0时,方程x2m+y2n=1表示椭圆,焦点在x,y轴上的椭圆分别有3个,故有3×2=6(个),选项B正确,D正确;当mn<0时,方程x2m+y2n=112.632063因为正整数m,n满足m≤7,n≤9,所以(m,n)所有可能的取值有7×9=63(种),其中m,n都取到奇数的情况有4×5=20(种),因此所求概率为13.解(1)如图,由题意知,四棱锥SABCD的顶点S,A,B所涂色互不相同,则A,C必须颜色相同,B,D必须颜色相同,所以共有5×4×3×1×1=60(种)不同的涂色方法.(2)(方法一)由题意知,四棱锥SABCD的顶点S,A,B所涂色互不相同,则A,C可以颜色相同,B,D可以颜色相同,并且两组中必有一组颜色相同.所以,先从两组中选出一组涂同一颜色,有2种选法(如:B,D颜色相同);再从5种颜色中,选出四种颜色涂在S,A,B,C四个顶点上,有5×4×3×2=120(种)不同的涂色方法.最后D涂B的颜色,根据分步乘法计数原理,共有2×120=240(种)不同的涂色方法.(方法二)分两类.第1类,C与A颜色相同.由题意知,四棱锥SABCD的顶点S,A,B所涂色互不相同,它们有5×4×3=60(种)不同的涂色方法.共有5×4×3×1×2=120(种)不同的涂色方法.第2类,C与A颜色不同.由题意知,四棱锥SABCD的顶点S,A,B所涂色互不相同,它们有5×4×3=60(种)不同的涂色方法.共有5×4×3×2×1=120(种)不同的涂色方法.由分类加法计数原理,共有120+120=240(种)不同的涂色方法.14.180依次给区域Ⅰ,Ⅱ,Ⅲ,Ⅳ涂色分别有5,4,3,3种方法,根据分步乘法计数原理,不同的涂色方法的种数为5×4×3×3=180.15.解含有2个偶数的“好的”子集A,有两种不同的情形:①两偶数是相邻的,有4种可能:2,4;4,6;6,8;8,10.每种情况必有3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古呼和浩特实验中学2024-2025学年下学期初三数学试题第一次月考考试试卷含解析
- 四川航天职业技术学院《历史影视剧鉴赏》2023-2024学年第一学期期末试卷
- 攀枝花学院《素描2》2023-2024学年第一学期期末试卷
- 商洛学院《非营利组织管理》2023-2024学年第二学期期末试卷
- 2025年图书馆学与信息学考试卷及答案
- 2025年市场研究与分析专业考研试题及答案
- 2025年中医执业医师考试试卷及答案
- 山西省吕梁地区离石区2024-2025学年三下数学期末监测试题含解析
- 上海视觉艺术学院《临床药学》2023-2024学年第二学期期末试卷
- 微信小程序电商运营培训及用户体验优化协议
- 2025-2030全球及中国电动和混合动力汽车动力传动系统行业市场现状供需分析及投资评估规划分析研究报告
- 科学控糖与健康体重管理
- 柑橘采后处理技术优化-全面剖析
- 浙江省镇海市镇海中学2025届高考考前提分英语仿真卷含答案
- 2025年广东省高三高考模拟测试二生物试卷(有答案)
- 2024年银行从业资格考试(中级)《风险管理》试题及答案指导
- 法律职业资格(主观题)题库附答案2025
- 2025年共青团团课考试题库及答案
- T-CECS120-2021套接紧定式钢导管施工及验收规程
- 人工智能导论智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 公司绿植管理制度
评论
0/150
提交评论