2024届吉林省通化市名校数学八年级第二学期期末学业质量监测模拟试题含解析_第1页
2024届吉林省通化市名校数学八年级第二学期期末学业质量监测模拟试题含解析_第2页
2024届吉林省通化市名校数学八年级第二学期期末学业质量监测模拟试题含解析_第3页
2024届吉林省通化市名校数学八年级第二学期期末学业质量监测模拟试题含解析_第4页
2024届吉林省通化市名校数学八年级第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省通化市名校数学八年级第二学期期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若a+|a|=0,则等于()A.2﹣2a B.2a﹣2 C.﹣2 D.22.下列语句:(1)可以把半径相等的两个圆中的一个看成是由另一个平移得到的;(2)可以把两个全等图形中的一个看成是由另一个平移得到的;(3)经过旋转,对应线段平行且相等;(4)中心对称图形上每一对对应点所连成的线段都被对称中心平分.其中正确的有()A.一个 B.两个 C.三个 D.四个3.下列二次根式;5;;;;.其中,是最简二次根式的有()A.2个 B.3个 C.4个 D.5个4.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等5.在平行四边形中,已知,,则它的周长是()A.8 B.10 C.12 D.166.在菱形中,,边上的高为()A. B. C. D.7.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是()A.平均数 B.众数 C.中位数 D.方差8.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个9.如果分式有意义,那么x的取值范围是()A.x≠-1 B.x=-1 C.x≠1 D.x>110.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE垂直平分BO,若AE=23cm,则OD=A.2cm B.3cm C.4cm D.6cm二、填空题(每小题3分,共24分)11.2018年6月1日,美国职业篮球联赛(NBA)总决赛第一场在金州勇士队甲骨文球馆进行.据统计,当天通过腾讯视频观看球赛的人数突破5250万.用科学记数法表示“5250”为_____.12.如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连接DE,取DE的中点F,连接EO并延长交CD于点G.若BE=3CG,OF=2,则线段AE的长是_____.13.方程的根是_____.14.如图,已知一次函数y=kx+3和y=-x+b的图象交于点P(2,4),则关于x的一元一次不等式kx+3>-x+b的解集是_______.15.直线与直线平行,则__________.16.如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________17.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______18.命题“等腰三角形两底角相等”的逆命题是_______三、解答题(共66分)19.(10分)如图,在直角坐标系中,每个小方格都是边长为的正方形,的顶点均在格点上,点的坐标是.先将沿轴正方向向上平移个单位长度,再沿轴负方向向左平移个单位长度得到,画出,点坐标是________;将绕点逆时针旋转,得到,画出,并求出点的坐标是________;我们发现点、关于某点中心对称,对称中心的坐标是________.20.(6分)如图1,为美化校园环境,某校计划在一块长为20m,宽为15m的长方形空地上修建一条宽为a(m)的甬道,余下的部分铺设草坪建成绿地.(1)甬道的面积为m2,绿地的面积为m2(用含a的代数式表示);(2)已知某公园公司修建甬道,绿地的造价W1(元),W2(元)与修建面积S之间的函数关系如图2所示.①园林公司修建一平方米的甬道,绿地的造价分别为元,元.②直接写出修建甬道的造价W1(元),修建绿地的造价W2(元)与a(m)的关系式;③如果学校决定由该公司承建此项目,并要求修建的甬道宽度不少于2m且不超过5m,那么甬道宽为多少时,修建的甬道和绿地的总造价最低,最低总造价为多少元?21.(6分)已知城有肥料200吨,城有肥料300吨.现将这些肥料全部运往,两乡.乡需要的肥料比乡少20吨.从城运往,两乡的费用分别为每吨20元和25元;从城运往,两乡的费用分别为每吨15元和24元.(1)求,两乡各需肥料多少吨?(2)设从城运往乡的肥料为吨,全部肥料运往,两乡的总运费为元,求与之间的函数关系式,并直接写出自变量的取值范围;(3)因近期持续暴雨天气,为安全起见,从城到乡需要绕道运输,实际运费每吨增加了元(),其它路线运费不变.此时全部肥料运往,两乡所需最少费用为10520元,则的值为__(直接写出结果).22.(8分)遂宁骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,某车行经营的A型车去年2月份销售总额为3万元,今年经过改造升级后A型车每辆销售价比去年增加300元,若今年2月份与去年2月份卖出的A型车数量相同,则今年2月份A型车销售总额将比去年2月份销售总额增加20%.(1)求今年2月份A型车每辆销售价多少元?(2)该车行计划今年3月份新进一批A型车和B型车共40辆,且B型车的进货数量不超过A型车数量的2倍,A、B两种型号车的进货和销售价格如表,问应如何进货才能使这批车获利最多?A型车B型车进货价格(元/辆)9001000销售价格(元/辆)今年的销售价格200023.(8分)如图,平行四边形ABCD中,点E、F分别是AD、BC的中点24.(8分)如图,在5×5的网格中,每个格点小正方形的边长为1,△ABC的三个顶点A、B、C都在网格格点的位置上.(1)请直接写出AB、BC、AC的长度;(2)求△ABC的面积;(3)求边AB上的高.25.(10分)一次期中考试中,甲、乙、丙、丁、戍五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)甲乙丙丁戍平均分标准差数学7172696870英语888294857685(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择.标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问甲同学在本次考试中,数学与英语哪个学科考得更好?26.(10分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

直接利用二次根式的性质化简得出答案.【题目详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【题目点拨】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2、B【解题分析】

根据平移的性质,对各语句进行一一分析,排除错误答案.【题目详解】(1)可以把半径相等的两个圆中的一个看成是由另一个平移得到的,正确;(2)可以把两个全等图形中的一个看成是由另一个平移得到的,错误;平移既需要两个图形全等,还需要两个图形有一种特殊的位置关系,(3)经过平移,对应线段平行且相等,故原语句错误;(4)中心对称图形上每一对对应点所连成的线段都被对称中心平分,正确.故选B.【题目点拨】本题利用了平移的基本性质:①图形平移前后的形状和大小没有变化,只是位置发生变化;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3、B【解题分析】

根据最简二次根式的定义即可判断.【题目详解】,,,、、是最简二次根式.故选:.【题目点拨】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.4、D【解题分析】

根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D.【题目详解】A.过直线外一点有且只有一条直线与这条直线平行,正确.B.平行于同一直线的两条直线平行,正确;C.直线y=2x−1与直线y=2x+3一定互相平行,正确;D.如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选D.【题目点拨】本题考查的知识点是命题与定理,解题关键是通过举反例证明命题的正确性.5、D【解题分析】

根据平行四边形的性质可得AB=CD=5,BC=AD=3,即可得周长.【题目详解】解:∵四边形ABCD是平行四边形,

∴AB=CD=5,BC=AD=3,

∴它的周长为:5×2+3×2=16,

故答案为:D【题目点拨】此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.6、C【解题分析】

先求出对角线BD长,利用菱形的面积等于对角线乘积的一半和底乘以高求解BC边上的高.【题目详解】解:设AC与BD交于点O,

∵四边形ABCD是菱形,

∴AO⊥BO,且AC=2AO,BD=2BO.

在Rt△AOB中利用勾股定理可得BO==1.

∴BD=2BO=2.

∴菱形的面积为BD×AC=×6×2=21.

设BC变上的高为h,则BC×h=21,即5h=21,h=1.2.

故选C.【题目点拨】本题考查菱形的性质,解题的关键是掌握菱形面积的两种计算方法.7、D【解题分析】

依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【题目详解】原数据的3,4,4,5的平均数为,原数据的3,4,4,5的中位数为4,原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;新数据3,4,4,4,5的平均数为,新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;∴添加一个数据4,方差发生变化,故选D.【题目点拨】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.8、B【解题分析】由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选B.9、C【解题分析】

根据分式有意义的条件,分母不等于0列不等式求解即可.【题目详解】解:由题意,得x-1≠0,

解得x≠1,

故选:C.【题目点拨】本题考查分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题的关键.10、C【解题分析】

由矩形的性质和线段垂直平分线的性质证出OA=AB=OB,根据AE求出OE即可解决问题.【题目详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB,∵AE=23cm∴OE=2cm,∴OD=OB=2OE=4cm;故选:C.【题目点拨】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.二、填空题(每小题3分,共24分)11、5.25×1【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:5250=5.25×1,故答案为5.25×1.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、.【解题分析】

已知点O是对角线AC的中点,DE的中点为F,可得OF为△EDG的中位线,根据三角形的中位线定理可得DG=2OF=4;由平行四边形的性质可得AB∥CD,AB=CD,即可得∠EAO=∠GCO,再判定△AOE≌△COG,根据全等三角形的性质可得AE=CG,即可得BE=DG=4,再由BE=3CG即可求得AE=CG=.【题目详解】∵点O是对角线AC的中点,DE的中点为F,∴OF为△EDG的中位线,∴DG=2OF=4;∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠EAO=∠GCO,在△AOE和△COG中,,∴△AOE≌△COG,∴AE=CG,∵AB=CD,∴BE=DG=4,∵BE=3CG,∴AE=CG=.故答案为:.【题目点拨】本题考查了平行四边形的性质、三角形的中位线定理,利用三角形的中位线定理求得DG=4;是解决问题的关键.13、,.【解题分析】方程变形得:x1+1x=0,即x(x+1)=0,可得x=0或x+1=0,解得:x1=0,x1=﹣1.故答案是:x1=0,x1=﹣1.14、x>1【解题分析】

观察函数图象得到当x>1时,函数y=kx+3的图象都在y=-x+b的图象上方,所以关于x的不等式kx+3>-x+b的解集为x>1.【题目详解】解:当x>1时,kx+3>-x+b,即不等式kx+3>-x+b的解集为x>1.故答案为x>1.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15、【解题分析】

根据平行直线的k相同可求解.【题目详解】解:因为直线与直线平行,所以故答案为:【题目点拨】本题考查了一次函数的图像,当时,直线和直线平行.16、【解题分析】

由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=,当P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=.【题目详解】解:连接FD∵正方形ABCD的边长为4,∴AB=BC=4,∠B=90°,∴AC=,当P与D重合时,PC=ED=PA,即G与A重合,∴EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的轨迹为DF,∵D是AE的中点,F是EG的中点,∴DF是△EAG的中位线,∴DF∥AG,∵∠CAG=90°,∠CAB=45°,∴∠BAG=45°,∴∠EAG=135°,∴∠EDF=135°,∴∠FDA=45°,∴F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=;故答案为:.【题目点拨】本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.17、8或【解题分析】

分CE:BE=1:3和BE:CE=1:3两种情况分别讨论.【题目详解】解:(1)当CE:BE=1:3时,如图:∵四边形ABCD是矩形,∴∠BAD=∠B=90º,∴∠BAE=∠BEA=45º,∴BE=AB=2,∵CE:BE=1:3,∴CE=,∴BC=2+=;(2)当BE:CE=1:3时,如图:同(1)可求出BE=2,∵BE:CE=1:3,∴CE=6,∴BC=2+6=8.故答案为8或.【题目点拨】本题考查了矩形的性质.18、有两个角相等的三角形是等腰三角形【解题分析】

根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【题目详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【题目点拨】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.三、解答题(共66分)19、,,.【解题分析】

(1)直接利用平移的性质得出对应点位置进而得出答案;

(2)直接利用旋转的性质得出对应点位置进而得出答案;

(3)直接利用关于点对称的性质得出对称中心即可.【题目详解】(1)如图所示:△A1B1C1,即为所求,点C1坐标是:(−2,1);故答案为(−2,1);(2)如图所示:△A2B1C2,即为所求,点C2坐标是:(−5,0);故答案为(−5,0);(3)点C.

C2关于某点中心对称,对称中心的坐标是:(−3,−1).故答案为(−3,−1).【题目点拨】本题考查了坐标系中作图,解题的关键是根据图形找出相对应的点即可.20、(1)15a、(300﹣15a);(2)①①80、70;;②W1=80×15a=1200a,W2=70(300﹣15a)=﹣1050a+21000;③甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;【解题分析】

(1)根据图形即可求解;(2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元②根据题意即可列出关系式;③W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,再根据2≤a≤5,即可进行求解.【题目详解】解:(1)甬道的面积为15am2,绿地的面积为(300﹣15a)m2;故答案为:15a、(300﹣15a);(2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元.②W1=80×15a=1200a,W2=70(300﹣15a)=﹣1050a+21000;③设此项修建项目的总费用为W元,则W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,∵k>0,∴W随a的增大而增大,∵2≤a≤5,∴当a=2时,W有最小值,W最小值=150×2+21000=21300,答:甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;故答案为:①80、70;【题目点拨】此题主要考查一次函数的应用,解题的关键是根据题意得到关系式进行求解.21、(1)140吨,160吨;(1);(3)a=1【解题分析】

(1)设C乡需肥料m吨,根据题意列方程得答案;(1)根据:运费=运输吨数×运输费用,得一次函数解析式;(3)利用一次函数的性质列方程解答即可.【题目详解】(1)设乡需要肥料吨,列方程得解得,即两乡分别需肥料140吨,160吨;(1),取值范围为:;(3)根据题意得,(-4+a)x+11000=10510,由(1)可知k=-4<0,w随x的增大而减小,所以x=140时,w有最小值,所以(-4+a)×140+11000=10510,解得a=1.【题目点拨】本题考查一次函数的应用,属于一般的应用题,解答本题的关键是根据题意得出y与x的函数关系式,另外同学们要掌握运用函数的增减性来判断函数的最值问题.22、(1)今年的销售价为1800元;(2)购进A型车14辆,B型车26辆,获利最多.【解题分析】

(1)设去年2月份A型车每辆的售价为x元,则今年2月份A型车每辆的售价为(x+300)元,然后依据今年2月份与去年2月份卖出的A型车数量相同列方程求解即可;(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,然后列出W与m的函数关系式,然后依据一次函数的性质求解即可.【题目详解】解:(1)设去年2月份A型车每辆的售价为x元,则今年2月份A型车每辆的售价为(x+300)元,根据题意得:,解得:x=1500,经检验,x=1500是原方程的解,则今年的销售价为1500+300=1800元.(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,根据题意得:w=(1800﹣900)m+(2000﹣1000)(40﹣m)=﹣10m+1.又∵40﹣m≤2m,∴m≥13.∵k=﹣100<0,∴当m=14时,w取最大值.答:购进A型车14辆,B型车26辆,获利最多.【题目点拨】本题考查了一次函数的应用、分式方程的应用,依据题意列出分式方程、得到W与m的函数关系式是解题的关键.23、见解析【解题分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论