




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省常州市新北区数学八年级第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.利用一次函数y=kx+b(k≠0)的图象解关于x的不等式kx+b≤0,若它的解集是x≥﹣2,则一次函数y=kx+b的图象为()A. B.C. D.2.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1 B.2 C.3 D.43.若y=x+2–b是正比例函数,则b的值是()A.0 B.–2 C.2 D.–0.54.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF5.下列几何图形是中心对称图形的是()A. B. C. D.6.下列各点一定在函数y=3x-1的图象上的是()A.(1,2) B.(2,1) C.(0,1) D.(1,0)7.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的面积是()A.24 B.30 C.40 D.488.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.9.如图,在数轴上表示关于x的不等式组的解集是()A. B. C. D.10.已知反比例函数y=1-2mx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则mA.m<0 B.m>0 C.m<12 D.m>二、填空题(每小题3分,共24分)11.当x______时,分式有意义.12.若代数式在实数范围内有意义,则的取值范围为____.13.将直线y=2x+1向下平移3个单位长度后所得直线的表达式是______.14.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.15.在反比例函数图象上有三个点A(,)、B(,)、C(,),若<0<<,则,,的大小关系是.(用“<”号连接)16.一元二次方程的解是__.17.若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.18.如图,在直角坐标系中,正方形OABC顶点B的坐标为(6,6),直线CD交直线OA于点D,直线OE交线段AB于点E,且CD⊥OE,垂足为点F,若图中阴影部分的面积是正方形OABC的面积的,则△OFC的周长为______.三、解答题(共66分)19.(10分)如图,在凸四边形中,,.(1)利用尺规,以为边在四边形内部作等边(保留作图痕迹,不需要写作法).(2)连接,判断四边形的形状,并说明理由.20.(6分)某港口P位于东西方向的海岸线上.在港口P北偏东25°方向上有一座小岛A,且距离港口20海里;在港口与小岛的东部海域上有一座灯塔B,△PAB恰好是等腰直角三角形,其中∠B是直角;(1)在图中补全图形,画出灯塔B的位置;(保留作图痕迹)(2)一艘货船C从港口P出发,以每小时15海里的速度,沿北偏西20°的方向航行,请求出1小时后该货船C与灯塔B的距离.21.(6分)如图,正方形ABCD中,E是AD上任意一点,于F点,于G点.求证:.22.(8分)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5 B.8.25 C.4.5或8.25 D.4.5或8.523.(8分)已知反比例函数为常数,且).(1)若在其图像的每个分支上,随的增大而增大,求的取值范围.(2)若其图象与一次函数y=−x+1图象的一个交点的纵坐标是3,求m的值。24.(8分)计算:(1)+﹣(2)2÷5(3)(+3﹣)÷(4)(2﹣3)2﹣(4+3)(4﹣3)25.(10分)解方程①2x(x-1)=x-1;②(y+1)(y+2)=226.(10分)如图是两个全等的直角三角形(ΔABC和ΔDEC)摆放成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°,点B落在DE边上,AB与CD相交于点F.若BC=4,求这两个直角三角形重叠部分ΔBCF
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
找到当x≥﹣2函数图象位于x轴的下方的图象即可.【题目详解】∵不等式kx+b≤0的解集是x≥﹣2,∴x≥﹣2时,y=kx+b的图象位于x轴的下方,C选项符合,故选:C.【题目点拨】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.2、B【解题分析】
试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是14,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=14,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=1.故选B.考点:翻折变换(折叠问题).3、C【解题分析】
根据正比例函数的定义可得关于b的方程,解出即可.【题目详解】解:由正比例函数的定义可得:2-b=0,解得:b=2.故选C.【题目点拨】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.4、B【解题分析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【题目详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四边形AECF是平行四边形,故不符合题意,故选B.【题目点拨】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.5、D【解题分析】
根据中心对称图形的定义判断即可.【题目详解】A、图形不是中心对称图形;B、图形不是中心对称图形;C、图形不是中心对称图形;D、图形是中心对称图形;故选D.【题目点拨】本题考查的是中心对称图形的定义,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,6、A【解题分析】
分别把x=1、2、0代入直线解析式,计算出对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.【题目详解】解:A、当x=1时,y=2,故选项正确;B、当x=2时,y=5≠1,故选项错误;C、当x=0时,y=-1≠1,故选项错误;D、当x=1时,y=2≠0,故选项错误;故选:A.【题目点拨】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式,将点的横坐标代入解析式求出函数值判断是否等于纵坐标是解决此题的关键.7、A【解题分析】
根据菱形的面积等于对角线乘积的一半即可解决问题.【题目详解】∵四边形ABCD是菱形,AC=6,BD=8,∴菱形ABCD的面积=⋅AC⋅BD=×6×8=24.故选A.【题目点拨】此题考查菱形的性质,解题关键在于计算公式.8、A【解题分析】试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选:A.9、C【解题分析】
根据图形可知:x<2且x≥-1,故此可确定出不等式组的解集.【题目详解】∵由图形可知:x<2且x≥−1,∴不等式组的解集为−1≤x<2.故答案选:C.【题目点拨】本题考查了在数轴上表示不等式的解集,解题的关键是根据数轴上的已知条件表示出不等式的解集.10、C【解题分析】
试题分析:根据反比例函数图象上点的坐标特征得到图象只能在一、三象限,故,则1-2m>0,∴m>12故选C.考点:反比例函数图象上点的坐标特征.二、填空题(每小题3分,共24分)11、≠【解题分析】试题分析:分式有意义的条件:分式的分母不为0时,分式才有意义.由题意得,.考点:分式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握分式有意义的条件,即可完成.12、且【解题分析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【题目详解】解:根据二次根式有意义,分式有意义得:且≠0,即且.【题目点拨】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13、y=1x-1【解题分析】
直线y=1x+1向下平移3个单位长度,根据函数的平移规则“上加下减”,可得平移后所得直线的解析式为y=1x+1﹣3=1x﹣1.考点:一次函数图象与几何变换.14、1.1.【解题分析】
设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【题目详解】解:要保持利润率不低于10%,设可打x折.
则500×-400≥400×10%,
解得x≥1.1.
故答案是:1.1.【题目点拨】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.15、【解题分析】
根据反比例函数图象上点的坐标特征解答即可;【题目详解】解:∵反比例函数图象在第二,第四象限时,y随x的增大而增大,∵点A(,)在反比例函数图象上,<0,∴>0,∵B(,)、C(,)在反比例函数图象上,0<<,∴,∴,故答案为:.【题目点拨】本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.16、x1=1,x2=﹣1.【解题分析】
先移项,在两边开方即可得出答案.【题目详解】∵∴=9,∴x=±1,即x1=1,x2=﹣1,故答案为:x1=1,x2=﹣1.【题目点拨】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.17、a>1且a≠3【解题分析】
首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.【题目详解】解:去分母得:3x﹣a=x﹣1,解得:x=,由分式方程的解为正数,得到>0,≠1,解得:a>1且a≠3,故答案为:a>1且a≠3【题目点拨】本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.18、3+2【解题分析】
证明△COD≌△OAE,推理出△OCF面积=四边形FDAE面积=2÷2=3,设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30,从而可得x+y的值,则△OFC周长可求.【题目详解】∵正方形OABC顶点B的坐标为(3,3),∴正方形的面积为1.所以阴影部分面积为1×=2.∵四边形AOCB是正方形,∴∠AOC=90°,即∠COE+∠AOE=90°,又∵CD⊥OE,∴∠CFO=90°∴∠OCF+∠COF=90°,∴∠OCD=∠AOE在△COD和△OAE中∴△COD≌△OAE(AAS).∴△COD面积=△OAE面积.∴△OCF面积=四边形FDAE面积=2÷2=3.设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30.所以x+y=2.所以△OFC的周长为3+2.故答案为3+2.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质,解题的关键是推理出两个阴影部分面积相等,得到△OFC两直角边的平方和、乘积,运用完全平方公式求解出OF+FC值.三、解答题(共66分)19、(1)见解析;(2)四边形ABCE是菱形,理由见解析.【解题分析】
(1)分别以点C、D为圆心,CD长为半径画弧,在四边形ABCD内部交于点E,连接CE、DE即可得;(2)先证AB∥CE,结合AB=CE可得四边形ABCE是平行四边形,然后由AB=BC可得四边形ABCE是菱形.【题目详解】解:(1)如图所示,△CDE即为所求:(2)四边形ABCE是菱形,理由:∵△CDE是等边三角形,∴∠ECD=60°,CD=DE=CE,∵∠ABC+∠BCD=240°,∴∠ABC+∠BCE=180°,∴AB∥CE,又∵AB=BC=CD,∴AB=CE,∴四边形ABCE是平行四边形,∵AB=BC,∴四边形ABCE是菱形.【题目点拨】本题主要考查作图,等边三角形的性质和菱形的判定,解题的关键是掌握等边三角形和菱形的判定及性质.20、(1)如图,点B即为所求见解析;(2)出发1小时后,货船C与灯塔B的距离为5海里.【解题分析】
(1)轨迹题意画出图形即可;(2)首先证明∠CPB=90°,求出PB、PC利用勾股定理即可解决问题;【题目详解】(1)如图,点B即为所求(2)如图,∠CPN=20°,∠NPA=25°,∠APB=45°,∠CPB=90°在Rt△ABP中,∵AP=20,BA=BP,∴PB=10在Rt△PCB中,由勾股定理得,CB===5,∴出发1小时后,货船C与灯塔B的距离为5海里.【题目点拨】此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.21、证明见解析【解题分析】
根据于F点,于G点,可得,根据四边形ABCD是正方形,可得,再根据,,可得:,在和中,由,可判定≌,根据全等三角形的性质可得:.【题目详解】证明:于F点,于G点,,四边形ABCD是正方形,,,又,,在和中,,≌,,【题目点拨】本题主要考查正方形的性质和全等三角形的判定和性质,解决本题的关键是要熟练掌握正方形的性质和全等三角形的判定和性质.22、D【解题分析】
根据函数图象中的数据可以求得小明从家去和返回时两种情况下离家600米对应的时间,本题得以解决.【题目详解】解:由图2可得,当2<t<5时,小明的速度为:(680-200)÷(5-2)=160m/min,设当小明离家600米时,所用的时间是t分钟,则200+160(t-2)=600时,t=4.5,80(16-t)=600时,t=8.5,故选:D.【题目点拨】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.23、(1)m<5;(2)m=-1【解题分析】
(1)由反比例函数y=的性质:当k<0时,在其图象的每个分支上,y随x的增大而增大,进而可得:m-5<0,从而求出m的取值范围;(2)先将交点的纵坐标y=3代入一次函数y=-x+1中求出交点的横坐标,然后将交点的坐标代入反比例函数y=中,即可求出m的值.【题目详解】(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,∴m−5<0,解得:m<5;(2)将y=3代入y=−x+1中,得:x=−2,∴反比例函数y=图象与一次函数y=−x+1图象的交点坐标为:(−2,3).将(−2,3)代入y=得:3=解得:m=−1.【题目点拨】此题考查反比例函数与一次函数的交点问题,解题关键在于反比例函数的性质进行解答24、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西方国家的国际援助政策与动机试题及答案
- 查漏补缺2025年机电工程考试试题及答案
- 网络工程师在企业中的角色与试题及答案
- 网络拓扑设计试题及答案归纳
- 新时代公共政策与技术创新的相关性研究试题与答案
- 团队管理与沟通试题及答案
- 软考网络项目管理要点试题及答案
- 机电工程行业实习的重要性分析试题及答案
- 软件设计师行业技能需求分析试题及答案
- 生态补偿政策的实践与挑战试题及答案
- 小升初谚语试题及答案
- 福建百校联考2025届高三5月高考押题卷-英语试卷(含答案)
- 项目一 动力电池课件 任务4 动力电池性能检测
- 装修陪跑服务合同协议
- 浙江省杭州市2024年中考英语真题(含答案)
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 工装治工具管理程序(含表格)
- 《办公软件应用》培训计划
- 国家开放大学《数学思想与方法》形考任务参考答案
- 庭院绿化施工合同
评论
0/150
提交评论