广东省阳江市教育局教研究室2024届数学八年级第二学期期末考试模拟试题含解析_第1页
广东省阳江市教育局教研究室2024届数学八年级第二学期期末考试模拟试题含解析_第2页
广东省阳江市教育局教研究室2024届数学八年级第二学期期末考试模拟试题含解析_第3页
广东省阳江市教育局教研究室2024届数学八年级第二学期期末考试模拟试题含解析_第4页
广东省阳江市教育局教研究室2024届数学八年级第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省阳江市教育局教研究室2024届数学八年级第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个2.将直线y=3x向下平移4个单位后所得直线的解析式为()A.y=3x+4 B.y=3x-4 C.y=3x+43.在一次科技作品制作比赛中,某小组8件作品的成绩(单位:分)分别是:7、10、9、8、7、9、9、8,对这组数据,下列说法正确的是()A.众数是9 B.中位数是8 C.平均数是8 D.方差是74.如图,在中,点分别是的中点,则下列四个判断中不一定正确的是()A.四边形一定是平行四边形B.若,则四边形是矩形C.若四边形是菱形,则是等边三角形D.若四边形是正方形,则是等腰直角三角形5.在△ABC中,已知∠A、∠B、∠C的度数之比是1:1:2,BC=4,△ABC的面积为()A.2 B.125 C.4 D.6.平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等7.如图,一棵高为16m的大树被台风刮断.若树在地面6m处折断,则树顶端落在离树底部()处.A.5m B.7m C.7.5m D.8m8.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是()A.a B.p C.S D.p,a9.下列说法正确的是()A.抛掷一枚硬币10次,正面朝上必有5次;B.掷一颗骰子,点数一定不大于6;C.为了解某种灯光的使用寿命,宜采用普查的方法;D.“明天的降水概率为90%”,表示明天会有90%的地方下雨.10.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共24分)11.将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为_____.12.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”,若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程x2+3x+m=0的解为_____.13.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.14.如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为____m.15.20190=__________.16.若,则的值为______.17.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是_____.18.若最简二次根式和是同类二次根式,则m=_____.三、解答题(共66分)19.(10分)如图,已知DB∥AC,E是AC的中点,DB=AE,连结AD、BE.(1)求证:四边形DBCE是平行四边形;(2)若要使四边形ADBE是矩形,则△ABC应满足什么条件?说明你的理由.20.(6分)已知关于x的方程x2﹣kx+k2+n=1有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=1.(1)求证:n<1;(2)试用k的代数式表示x1;(3)当n=﹣3时,求k的值.21.(6分)我们用a表示不大于a的最大整数,用a表示大于a的最小整数.例如:2.52,33,2.53;<2.5>3,<4>5,<1.5>1.解决下列问题:(1)4.5,<3.5>.(2)若x2,则<x>的取值范围是;若<y>1,则y的取值范围是.(3)已知x,y满足方程组;求x,y的取值范围.22.(8分)如图,已知直线l1:y=-2x+4与x、y轴分别交于点N、C,与直线l2:y=kx+b(k≠0)交于点M,点M的横坐标为1,直线l2与x轴的交点为A(-2,0)(1)求k,b的值;(2)求四边形MNOB的面积.23.(8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是______m,他途中休息了______min,休息后继续行走的速度为______m/min;(2)当时,求y与x的函数关系式;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?24.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在BD上,OE=OF.(1)求证:AE=CF.(2)若AB=2,∠AOD=120°,求矩形ABCD的面积.25.(10分)计算:(1)(2)26.(10分)如图,在正方形中,已知于.(1)求证:;(2)若,求的长.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.2、D【解题分析】

只向下平移,让比例系数不变,常数项减去平移的单位即可.【题目详解】直线y=3x向下平移4个单位后所得直线的解析式为y=3x故选:D【题目点拨】本题考查了一次函数图象与几何变换,解题的关键是熟记函数平移的规则“上加下减”.本题属于基础题,难度不大,解决该题型题目时,根据平移的规则求出平移后的函数解析式是关键.3、A【解题分析】

根据众数、中位数、平均数、方差的计算方法计算即可.【题目详解】解:8件作品的成绩(单位:分)按从小到大的顺序排列为:7、7、8、8、9、9、9、10,9出现了3次,次数最多,故众数为9,中位数为(8+9)÷2=8.5,平均数=(7×2+8×2+9×3+10)÷8=8.375,方差S2=[2×(7-8.375)2+2×(8-8.375)2+3×(9-8.375)2+(10-8.375)2]=0.1.所以A正确,B、C、D均错误.故选A.【题目点拨】本题考查了平均数,中位数,众数与方差的求法.平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是用来衡量一组数据波动大小的量.4、C【解题分析】

利用正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定进行依次推理,可求解.【题目详解】解:∵点D,E,F分别是AB,BC,AC的中点,,∴四边形ADEF是平行四边形故A正确,若∠B+∠C=90°,则∠A=90°∴四边形ADEF是矩形,故B正确,若四边形ADEF是菱形,则AD=AF,∴AB=AC∴△ABC是等腰三角形故C不一定正确若四边形ADEF是正方形,则AD=AF,∠A=90°∴AB=AC,∠A=90°∴△ABC是等腰直角三角形故D正确故选:C.【题目点拨】本题考查了正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定,熟练运用这些性质进行推理是本题的关键.5、D【解题分析】

根据比例设∠A=k,∠B=k,∠C=2k,然后根据三角形的内角和等于180°列方程求出k的值,从而得到三个内角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半求出AB,利用勾股定理列式求出AC,然后根据三角形的面积公式列式计算即可得解.【题目详解】解:设∠A=k,∠B=k,∠C=2k,

由三角形的内角和定理得,k+k+2k=180°,

解得k=45°,

所以,∠A=45°,∠B=45°,∠C=90°,

∴AC=BC=4,,

所以,△ABC的面积=12故选:D.【题目点拨】本题考查的知识点是直角三角形的性质和三角形的内角和定理,解题关键是利用“设k法”求解三个内角的度数.6、D【解题分析】

根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.【题目详解】平行四边形的对角相等,对角线互相平分,对边平行且相等.故选D.【题目点拨】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.7、D【解题分析】

首先设树顶端落在离树底部xm,根据勾股定理可得62+x2=(16-6)2,再解即可.【题目详解】设树顶端落在离树底部xm,由题意得:62+x2=(16-6)2,解得:x1=8,x2=-8(不符合题意,舍去).所以,树顶端落在离树底部8m处.故选:D.【题目点拨】此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.8、B【解题分析】

根据常量的定义判断即可,常量就是不变的量,不随自变量的变化而变化.【题目详解】解:根据题意长方形的周长p=60m,所以常量是p,故选:B.【题目点拨】本题主要考查常量的定义,是函数的基本知识点,应当熟练掌握.9、B【解题分析】

利用概率的意义、普查和抽样调查的特点即可作出判断.【题目详解】A.抛掷一枚硬币10次,可能出现正面朝上有5次是随机的,故选项错误;B.正确;C.调查灯泡的使用寿命具有破坏性,因而适合抽查,故选项错误;D.“明天的降水概率为90%”,表示明天下雨的可能性是90%,故选项错误。故选B.【题目点拨】此题考查概率的意义,随机事件,全面调查与抽样调查,解题关键在于掌握各性质10、A【解题分析】

根据已知条件易证△DEO≌△BFO,可得△DEO和△BFO的面积相等,由此可知阴影部分的面积等于Rt△ADC的面积,继而求得阴影部分面积.【题目详解】∵四边形ABCD是矩形,AB=2,BC=3,∴AD∥BC,AD=BC=3,AB=CD=2,OB=OD,∴∠DEO=∠BFO,在△DEO和△FBO中,,∴△DEO≌△BFO,即△DEO和△BFO的面积相等,∴阴影部分的面积等于Rt△ADC的面积,即阴影部分的面积是:故选A..【题目点拨】本题考查了矩形的性质及全等三角形的判定与性质,证明△DEO≌△BFO,得到阴影部分的面积等于Rt△ADC的面积是解决问题的关键.二、填空题(每小题3分,共24分)11、y=2x【解题分析】

根据上加下减,左加右减的法则可得出答案【题目详解】一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度变为:y=2x﹣3+3=2x【题目点拨】此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质12、x1=﹣1,x1=﹣1.【解题分析】

利用题中的新定义求出m的值,代入一元二次方程,运用因式分解法解方程,即可求出解.【题目详解】解:由“关联数”定义得一次函数为y=x+m﹣1,又∵此一次函数为正比例函数,∴m﹣1=0,解得:m=1,∴关于x的方程为x1+3x+1=0,因式分解得:(x+1)(x+1)=0,∴x+1=0或x+1=0,∴x1=﹣1,x1=﹣1;故答案为x1=﹣1,x1=﹣1.【题目点拨】本题考查新定义“关联数”、一元二次方程的解法以及一次函数的定义,弄清题中的新定义是解本题的关键.13、1【解题分析】

过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.【题目详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴A(1,1),B(2,),∵AC∥BD∥y轴,∴C(1,k),D(2,),∵△OAC与△ABD的面积之和为,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案为1.【题目点拨】本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.14、1.6【解题分析】

确定出OD是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.【题目详解】解:∵跷跷板AB的支柱OD经过它的中点O,AC、OD都与地面垂直,∴OD是△ABC的中位线,∴AC=2OD=2×0.8=1.6米.故答案为1.6米.【题目点拨】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,是基础题,熟记定理是解题的关键.15、1【解题分析】

任何不为零的数的零次方都为1.【题目详解】任何不为零的数的零次方都等于1.=1【题目点拨】本题考查零指数幂,熟练掌握计算法则是解题关键.16、.【解题分析】

由可得,化简即可得到,再计算,即可求得=.【题目详解】∵,∴,∴,∴,∴=.故答案为:.【题目点拨】本题考查了完全平方公式的变形应用,正确求得是解决问题的关键.17、x<1【解题分析】试题解析:一次函数y=kx+b经过点(1,2),且函数值y随x的增大而增大,∴当y<2时,x的取值范围是x<1.故答案为:x<1.18、1.【解题分析】

由最简二次根式的定义可得3m+1=8+2m,解出m即可.【题目详解】由题意得:3m+1=8+2m,解得:m=1.故答案为1.【题目点拨】本题主要考查最简二次根式的定义.三、解答题(共66分)19、(1)见解析;(2)△ABC满足AB=BC时,四边形DBEA是矩形【解题分析】

(1)根据EC=BD,EC∥BD即可证明;(2)根据等腰三角形三线合一的性质得出∠BEA=90°,根据有一个角是直角的平行四边形是矩形推出即可.【题目详解】(1)∵E是AC中点,∴AE=EC,∵DB=AE,∴EC=BD又∵DB∥AC,∴四边形DECB是平行四边形;(2)△ABC满足AB=BC时,四边形DBEA是矩形,理由如下:∵DB=AE,又∵DB∥AC,∴四边形DBEA是平行四边形(一组对边平行且相等的四边形是平行四边形),∵AB=BC,E为AC中点,∴∠AEB=90°,∴平行四边形DBEA是矩形,即△ABC满足AB=BC时,四边形DBEA是矩形.【题目点拨】本题考查了矩形的判定,平行四边形的判定与性质,等腰三角形三线合一的性质,题目难度不大,熟练掌握平行四边形的判定与性质以及平行四边形与矩形的联系是解题的关键.20、(3)证明见解析;(3)x3=3﹣k或x3=5﹣k.(3)k=3.【解题分析】

(3)方程有两个不相等的实数根,则△>3,建立关于n,k的不等式,由此即可证得结论;(3)根据根与系数的关系,把x3+x3=k代入已知条件(3x3+x3)3﹣8(3x3+x3)+35=3,即可用k的代数式表示x3;(3)首先由(3)知n<﹣k3,又n=﹣3,求出k的范围.再把(3)中求得的关系式代入原方程,即可求出k的值.【题目详解】证明:(3)∵关于x的方程x3﹣kx+k3+n=3有两个不相等的实数根,∴△=k3﹣4(k3+n)=﹣3k3﹣4n>3,∴n<﹣k3.又﹣k3≤3,∴n<3.解:(3)∵(3x3+x3)3﹣8(3x3+x3)+35=3,x3+x3=k,∴(x3+x3+x3)3﹣8(x3+x3+x3)+35=3∴(x3+k)3﹣8(x3+k)+35=3∴[(x3+k)﹣3][(x3+k)﹣5]=3∴x3+k=3或x3+k=5,∴x3=3﹣k或x3=5﹣k.(3)∵n<﹣k3,n=﹣3,∴k3<4,即:﹣3<k<3.原方程化为:x3﹣kx+k3﹣3=3,把x3=3﹣k代入,得到k3﹣3k+3=3,解得k3=3,k3=3(不合题意),把x3=5﹣k代入,得到3k3﹣35k+33=3,△=﹣39<3,所以此时k不存在.∴k=3.【题目点拨】本题综合考查了一元二次方程的解法、一元二次方程根的定义、一元二次方程根的判别式、一元二次方程根与系数的关系以及分类讨论的思想,熟练运用相关知识是解决问题的关键.21、(1)-5,4;(1)1≤x<3,-1≤y<-1;(3)-1≤x<0,1≤y<1

【解题分析】

(1)根据题目所给信息求解;

(1)根据[1.5]=1,[3]=3,[-1.5]=-3,可得[x]=1中的1≤x<3,根据<a>表示大于a的最小整数,可得<y>=-1中,-1≤y<-1;

(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【题目详解】解:(1)由题意得:[-4.5]=-5,<y>=4;

故答案为:-5,4;(1)∵[x]=1,

∴x的取值范围是1≤x<3;

∵<y>=-1,

∴y的取值范围是-1≤y<-1;

故答案为:1≤x<3,-1≤y<-1;(3)解方程组,

得:,

∴x的取值范围为-1≤x<0,y的取值范围为1≤y<1.【题目点拨】本题考查了一元一次不等式的应用与解二元一次方程组,解答本题的关键是读懂题意,根据题目所给的信息进行解答.22、(1)k=,b=;(2)【解题分析】

(1)根据待定系数法可求出解析式,得到k、b的值;(2)根据函数解析式与坐标轴的交点,可利用面积公式求出四边形的面积.【题目详解】(1)M为l1与l2的交点令M(1,y),代入y=2x+4中,解得y=2,即M(1,2),将M(1,2)代入y=kx+b,得k+b=2①将A(-2,0)代入y=kx+b,得-2k+b=0②由①②解得k=,b=(2)解:由(1)知l2:y=x+,当x=0时y=即OB=∴S△AOB=

OA·OB=×2×

=在y=-2x+4令y=0,得N(2,0)又因为A(-2,0),故AN=4所以S△AMN=×AN×ym=×4×2=4故SMNOB=S△AMN-S△AOB=4-=.【题目点拨】考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.23、(1)3600,20,1;(2)y=1x-2;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是1100m.【解题分析】

(1)观察函数图象,可找出小亮行走的总路程及途中休息的时间,再利用速度=路程÷时间可求出小亮休息后继续行走的速度;

(2)观察图象,找出点的坐标,利用待定系数法即可求出:当50≤x≤80时,y与x的函数关系式;

(3)利用小颖到达终点所用的时间=乘坐缆车的总路程÷缆车的平均速度可求出小颖到达终点所用的时间,用其加上50可求出小颖到达终点时小亮所用时间,再利用小亮离缆车终点的路程=小亮休息后继续行走的速度×(到达终点的时间-小颖到达终点时小亮所用时间)即可求出结论.【题目详解】解:(1)观察函数图象,可知:小亮行走的总路程是3600m,小亮途中休息的时间为:50-30=20(min),休息后继续行走的速度为:(3600-1950)÷(80-50)=1(m/min).故答案为:3600;20;1.(2)设当50≤x≤80时,y与x的函数关系式为y=kx+b(k≠0),由图象知:点(50,1950)与点(80,3600)在直线上,∴,解得:,∴当50≤x≤80时,y与x的函数关系式为y=1x-2.(3)小颖到达终点所用的时间为12÷180=10(分钟),∴小颖到达终点时小亮已用时50+10=60(分钟),∴小亮离缆车终点的路程为1×(80-60

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论