




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省白银市平川区数学八下期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.不等式:的解集是()A. B. C. D.2.下列一次函数中,y随x值的增大而减小的是()A.y=3﹣2x B.y=3x+1 C.y=x+6 D.y=(﹣2)x3.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:;;;,从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.2种 B.3种 C.4种 D.5种4.下列由左到右变形,属于因式分解的是A. B.C. D.5.如图中的图象(折线ABCDE)描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为1603千米/④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法有()A.1个 B.2个 C.3个 D.4个6.在平面直角坐标系中,点M(2019,–2019)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形AnBnCnDn的面积是A.①②③ B.②③④ C.①② D.②③8.在端午节到来之前,学校食堂推荐粽子专卖店的号三种粽子,对全校师生爱吃哪种粽子作调查,以决定最终的采购,下面的统计量中最值得关注的是()A.方差 B.平均数 C.众数 D.中位数9.若二次根式有意义,则x的取值范围是()A.x≤﹣ B.x≥﹣ C.x≥ D.x≤10.若一个等腰三角形的腰长为5,底边长为6,则底边上的高为()A.4 B.3 C.5 D.611.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是()A.a=32,b=42,c=52 B.a=9,b=12,c=15C.∠A:∠B:∠C=5:2:3 D.∠C﹣∠B=∠A12.如图,是由两个大小完全相同的圆柱形容器在中间连通而成的可以盛水的器具,现匀速地向容器A中注水,则容器A中水面上升的高度h随时间t变化的大致图象是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.14.如图,在中,,,,把绕边上的点顺时针旋转90°得到,交于点,若,则的长是________.15.如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.16.方程的解是__________.17.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=_____cm.18.若A(﹣1,y1)、B(﹣1,y1)在y=1x图象上,则y1、y1大小关系是y1_____y1三、解答题(共78分)19.(8分)如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.(1)求证:△BDE≌△BAC;(2)求证:四边形ADEG是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC满足条件_____________________时,四边形ADEG是矩形.②当△ABC满足条件_____________________时,四边形ADEG是正方形?20.(8分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出与的函数表达式;(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?21.(8分)把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图中所示的信息:(1)若设有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),
求y与x的关系式;(2)每本字典的厚度为多少?22.(10分)一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,当时,.求这个函数的表达式;在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.24.(10分)在ΔABC中,∠C=90°,AC=BC,BP是ΔABC的角平分线,过点P作PD⊥AB于点D,将∠EPF绕点P旋转,使∠EPF的两边交直线AB于点E,交直线BC于点F,请解答下列问题:(1)当∠EPF绕点P旋转到如图1的位置,点E在线段AD上,点F在线段BC上时,且满足PE=PF.①请判断线段CP、CF、AE之间的数量关系,并加以证明②求出∠EPF的度数.(2)当∠EPF保持等于(1)中度数且绕点P旋转到图2的位置时,若∠CFP=60°,BE=3+6-125.(12分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?26.如图,在中,AD是BC边上的中线,E是AD的中点,延长BE到F,使,连接AF、CF、DF.求证:;若,试判断四边形ADCF的形状,并证明你的结论.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
利用不等式的基本性质:先移项,再系数化1,即可解得不等式;注意系数化1时不等号的方向改变.【题目详解】1-x>0,解得x<1,故选C.【题目点拨】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.2、A【解题分析】
根据一次函数的性质对各选项进行逐一分析即可.关键看x的系数的正负.【题目详解】A.∵k=-2<0,∴y随x的增大而减小,故本选项正确;B.∵k=3>0,∴y随x的增大而增大,故本选项错误;C.∵k=>0,∴y随x的增大而增大,故本选项错误;D.∵k=﹣2>0,∴y随x的增大而增大,故本选项错误.故选:A.【题目点拨】本题考查了一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.3、C【解题分析】
根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【题目详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形.③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形.①③可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.①④可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.故选C【题目点拨】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理,属于中档题.4、A【解题分析】
根据因式分解是把一个整式分解成几个整式乘积的形式由此即可解答.【题目详解】选项A,符合因式分解的定义,本选项正确;选项B,结果不是整式的积的形式,不是因式分解,本选项错误;选项C,结果不是整式的积的形式,不是因式分解,本选项错误;选项D,结果不是整式的积的形式,因而不是因式分解,本选项错误.故选A.【题目点拨】本题主要考查了因式分解的定义,正确理解因式分解的定义是解题关键.5、B【解题分析】
根据函数图形的s轴判断行驶的总路程,从而得到①错误;根据s不变时为停留时间判断出②正确;根据平均速度=总路程÷总时间列式计算即可判断出③正确;再根据一次函数图象的实际意义判断出④错误.【题目详解】①由图可知,汽车共行驶了120×2=240千米,故本小题错误;②汽车在行驶途中停留了2-1.5=0.5小时,故本小题正确;③汽车在整个行驶过程中的平均速度为240千米/时,故本小题正确;④汽车自出发后3小时至4.5小时之间行驶离出发地越来越近,是匀速运动,故本小题错误;综上所述,正确的说法有②③共2个.故选:B.【题目点拨】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,准确识图,理解转折点的实际意义是解题的关键.6、D【解题分析】
四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),再根据点M的坐标的符号,即可得出答案.【题目详解】解:∵M(2019,﹣2019),∴点M所在的象限是第四象限.故选D.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7、C【解题分析】
首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.【题目详解】①连接A1C1,B1D1.
∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形A1B1C1D1是平行四边形;
∵AC丄BD,∴四边形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故①错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故②正确;
③根据中位线的性质易知,A5B5=∴四边形A5B5C5D5的周长是2×;故③正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是.故④正确;
综上所述,②③④正确.
故选C.【题目点拨】考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.8、C【解题分析】
学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【题目详解】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选:C.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9、C【解题分析】【分析】根据二次根式有意义的条件——被开方数为非负数进行求解即可得.【题目详解】由题意得:2x-1≥0,解得:x≥,故选C.【题目点拨】本题考查了二次根式有意义的条件,熟知被开方数为非负数时二次根式有意义是解题的关键.10、A【解题分析】
根据等腰三角形底边高线和中线重合的性质,则BD=DC=3,可以根据勾股定理计算底边的高AD=.【题目详解】解:如图,在△ABC中,AB=AC=5,AD⊥BC,则AD为BC边上的中线,即D为BC中点,∴BD=DC=3,在直角△ABD中AD==1.故选:A.【题目点拨】本题考查了勾股定理在直角三角形中的正确运用,考查了等腰三角形底边高线、中线重合的性质,本题中根据勾股定理正确计算AD是解题的关键.11、A【解题分析】
由三角形内角和定理及勾股定理的逆定理进行判断即可.【题目详解】A.a+b=32+42=25=52=c,构不成三角形,也就不可能是直角三角形了,故符合题意;B.a2+b2=92+122=225=152=c2,根据勾股定理逆定理可以判断,△ABC是直角三角形,故不符合题意;C.设∠A、∠B、∠C分别是5x、2x、3x,5x+2x+3x=180,x=18,∠A=90°,所以△ABC是直角三角形,故不符合题意;D.∠C﹣∠B=∠A,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形,故不符合题意,故选A.【题目点拨】本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.12、C【解题分析】
根据题意可以分析出各个过程中A中水面上的快慢,从而可以解答本题.【题目详解】由题意和图形可知,从开始到水面到达A和B连通的地方这个过程中,A中水面上升比较快,从水面到达A和B连通的地方到B中水面和A中水面持平这个过程中,A中水面的高度不变,从B中水面和A中水面持平到最后两个容器中水面上升到最高这个过程中,A中水面上升比较慢,故选C.【题目点拨】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(每题4分,共24分)13、【解题分析】
由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.【题目详解】解:如图,作CG⊥CP交DF的延长线于G.则∠PCF+∠GCF=∠PCG=90°,∵四边形ABCD是边长为2的正方形,∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,∵E、F分别为CD、BC中点,∴DE=CE=CF=BF=1,∴AE=DF=,∴DP==,∴PE=,PF=,在△ADE和△DCF中:∴△ADE≌△DCF(SAS),∴∠AED=∠DFC,∴∠CEP=∠CFG,∵∠ECP+∠PCF=∠DCB=90°,∴∠ECP=∠FCG,在△ECP和△FCG中:∴△ECP≌△FCG(ASA),∴CP=CG,EP=FG,∴△PCG为等腰直角三角形,∴PG=PF+FG=PF+PE==CP,∴CP=.故答案为:.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.14、2【解题分析】
在Rt△ACB中,,由题意设BD=B′D=AE=x,由△EDB′∽△ACB,可得,推出,可得,求出x即可解决问题。【题目详解】解:在中,,由题意设,∵,∴,∴,∴,∴,∴,故答案为2.【题目点拨】本题考查旋转变换、直角三角形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会理由参数构建方程解决问题,所以中考常考题型.15、1【解题分析】
根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.【题目详解】解:∵四边形ABCD为平行四边形,
∴AO=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,,
∴△AOE≌△COF,
∴OF=OE=1.5,CF=AE,
根据平行四边形的对边相等,得
CD=AB=4,AD=BC=5,
故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.
故答案为:1.【题目点拨】本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.16、【解题分析】
根据解无理方程的方法可以解答此方程,注意无理方程要检验.【题目详解】解:∵,∴1-2x=x2,∴x2+2x-1=0,∴(x+1)(x-1)=0,解得,x1=-1,x2=1,经检验,当x=1时,原方程无意义,当x=-1时,原方程有意义,故原方程的根是x=-1,故答案为:x=-1.【题目点拨】本题考查无理方程,解答本题的关键是明确解无理方程的方法.17、1.【解题分析】
根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【题目详解】解:∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=1cm,BC=6cm.∵AB=CD,∴CD=1cm故答案为1.18、>【解题分析】
根据反比例函数的图象和性质,再根据点的横坐标的大小,判断纵坐标的大小.【题目详解】∵y=1x图象在一、三象限,在每个象限内y随xA(﹣1,y1)、B(﹣1,y1)都在第三象限图象上的两点,∵﹣1<﹣1,∴y1>y1,故答案为:>.【题目点拨】考查比例函数的图象和性质,当k>0,在每个象限内,y随x的的增大而减小,是解决问题的依据.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC=【解题分析】
(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:ACAB.【题目详解】(1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∵,∴△BDE≌△BAC(SAS);(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴ADAB.又∵四边形ACHG是正方形,∴AC=AG,∴ACAB,∴当∠BAC=135°且ACAB时,四边形ADEG是正方形.【题目点拨】本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.20、(1)1400;(2);(3)小芳的骑车速度至少为.【解题分析】
(1)直接利用反比例函数图象上点的坐标得出小芳家与学校之间的距离;(2)利用待定系数法求出反比例函数解析式;(3)利用y=8进而得出骑车的速度.【题目详解】(1)小芳家与学校之间的距离是:();(2)设,当时,,解得:,故与的函数表达式为:;(3)当时,,,在第一象限内随的增大而减小,小芳的骑车速度至少为.【题目点拨】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.21、(1)y=5x+85,(2)5cm.【解题分析】分析:(1)利用待定系数法即可解决问题;(2)每本字典的厚度==5(cm).详(1)解:根据题意知y与x之间是一次函数关系,故设y与x之间的关系的关系式为y=kx+b则,解得:k=5,b=85∴关系式为y=5x+85,(2)每本字典的厚度==5(cm).点睛:本题考查一次函数的应用、解题的关键是熟练掌握待定系数法解决问题.22、(1)x>﹣2;(2)①(1,6);②2.【解题分析】
(1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.【题目详解】解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为:x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴,得,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1,∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B的坐标为(1,6);②∵点B(1,6),∴6=﹣4×1+a,得a=2,即a的值是2.【题目点拨】本题主要考查学生对于一次函数图像性质的掌握程度23、;详见解析;或【解题分析】
(1)把x=0,y=4;x=1,y=3代入函数中,求出k、b即可;(1)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.【题目详解】(1)把x=0,y=4代入得:4=,∴b=3,把x=1,y=3,b=3代入得:,∴k=1,即函数的表达式为,(1)由题意得:,画图象如下图:(3)由上述图象可得:当x<0或x1时,,故答案为:x<0或x1.【题目点拨】本题考查了待定系数法求函数表达式,函数图象的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中级模拟测试题及答案
- 婴儿智力考试题及答案
- 多面向广告传播的趋势与预测试题及答案
- 广告设计项目中的协作模式 试题及答案
- 2024年广告设计师创意策略分析试题及答案
- 2024年纺织品设计师证书的个人时间管理计划试题及答案
- 广告设计师考试全方位试题及答案
- 国际设计师职业发展的必要能力分析试题及答案
- 会务行政面试题及答案
- 理货人员考试题及答案
- 养老护理员职业技能等级认定三级(高级工)理论知识考核试卷
- 餐饮业消防安全管理制度
- 研发费用加计扣除政策执行指引(1.0版)
- GB/T 20647.9-2006社区服务指南第9部分:物业服务
- 海洋油气开发生产简介课件
- 重庆十八梯介绍(改)课件
- 一级病原微生物实验室危害评估报告
- 设备机房出入登记表
- 起重吊装作业审批表
- 最新三角形的特性优质课教学设计公开课教案
- X射线衍射学:第九章 点阵常数的精确测定
评论
0/150
提交评论