




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省盖州市东城中学数学八年级第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.化简的结果是()A.a-b B.a+b C. D.2.如图,在,,,,点P为斜边上一动点,过点P作于点,于点,连结,则线段的最小值为()A.1.2 B.2.4 C.2.5 D.4.83.已知m=30,则()A.4<m<5 B.6<m<7 C.5<m<6 D.7<m<84.如图,AB∥CD,点E在BC上,且CD=CE,∠D=75°,则∠B的度数为().A.75° B.40° C.30° D.15°5.已知,则下列不等式中不正确的是()A. B. C. D.6.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于()A.2﹣ B.1 C. D.﹣l7.如图,直线与直线交于点,关于x的不等式的解集是()A. B. C. D.8.如图,已知D、E分别是△ABC的AB、AC边上的一点,DE∥BC,△ADE与四边形DBCE的面积之比为1:3,则AD:AB为()A.1:4 B.1:3 C.1:2 D.1:59.样本数据3、6、a、4、2的平均数是5,则这个样本的方差是(
)A.8 B.5 C. D.310.下列关于向量的等式中,不正确的是()A. B. C. D.11.下列二次根式中与是同类二次根式的是()A. B. C. D.12.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查二、填空题(每题4分,共24分)13.如图,P是矩形ABCD内一点,,,,则当线段DP最短时,________.14.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.15.在平面直角坐标系中有两点和点.则这两点之间的距离是________.16.如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.17.如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.18.如图,在平面直角坐标系中,菱形的顶点在轴上,顶点在反比例函数的图象上,若对角线,则的值为__________.三、解答题(共78分)19.(8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园(围墙最长可利用),现在已备足可以砌长的墙的材料,恰好用完,试求的长,使矩形花园的面积为.20.(8分)已知,,是的三边,且满足,试判断的形状,并说明理由.21.(8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有1600名学生,试估计该校选择“足球”项目的学生有多少人?22.(10分)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需费用较少?23.(10分)A、B、C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:竞选人ABC笔试859590口试8085(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的200名学生进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能推荐一个),则A在扇形统计图中所占的圆心角是度.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:4:2的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.24.(10分)若m,n,p满足m-n=8,mn+p2+16=0,求m+n+p的值?25.(12分)某河流防污治理工程已正式启动,由甲队单独做5个月后,乙队再加入合作3个月就可以完成这项工程。已知若甲队单独做需要10个月可以完成。(1)乙队单独完成这项工程需要几个月?(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?26.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【题目详解】.故选B.【题目点拨】此题主要考查了分式的混合运算,熟练掌握运算法则是解题关键.2、D【解题分析】
连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【题目详解】解:连接PC,
∵PE⊥AC,PF⊥BC,
∴∠PEC=∠PFC=∠C=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=1,BC=6,
∴AB=10,
∴PC的最小值为:
∴线段EF长的最小值为4.1.
故选:D.【题目点拨】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.3、C【解题分析】
根据被开方数越大算术平方根越大,可得答案.【题目详解】∵25<30<36,∴5<m<6,故选:C.【题目点拨】本题考查了估算无理数的大小,解题关键在于掌握运算法则.4、C【解题分析】
根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.【题目详解】∵CD=CE,∴∠D=∠DEC,∵∠D=75°,∴∠C=180°-75°×2=30°,∵AB∥CD,∴∠B=∠C=30°.故选C.【题目点拨】此题考查的知识点是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C的度数.5、D【解题分析】
根据不等式的性质逐项分析即可.【题目详解】A.∵,∴,故正确;B.∵,∴,故正确;C.∵,∴,故正确;D.∵,∴,故不正确;故选D.【题目点拨】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.6、D【解题分析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故选D.【题目点拨】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.7、A【解题分析】
找到直线函数图像在直线的图像上方时x的取值范围即可.【题目详解】解:观察图像可知,不等式解集为:,故选A.【题目点拨】本题考查了一次函数与一元一次不等式,从函数图像的角度看,就是确定直线在另一条直线上(或下)方部分时,x的取值范围.8、C【解题分析】
先根据已知条件求出△ADE∽△ABC,再根据面积的比等于相似比的平方解答即可.【题目详解】解:∵S△ADE:S四边形DBCE=1:3,∴S△ADE:S△ABC=1:4,又∵DE∥BC,∴△ADE∽△ABC,相似比是1:1,∴AD:AB=1:1.故选:C.【题目点拨】此题考查相似三角形的判定与性质,解题关键在于求出△ADE∽△ABC9、A【解题分析】
本题可先求出a的值,再代入方差的公式即可.【题目详解】∵3、6、a、4、2的平均数是5,
∴a=10,
∴方差.
故选A.【题目点拨】本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.10、B【解题分析】
根据平面向量的加法法则判定即可.【题目详解】A、,正确,本选项不符合题意;B、,错误,本选项符合题意;C、,正确,本选项不符合题意;D、,正确,本选项不符合题意;故选B.【题目点拨】本题考查平面向量的加法法则,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11、B【解题分析】
先将各选项化简,再根据同类二次根式的定义解答.【题目详解】A、,与被开方数不相同,故不是同类二次根式,选项错误;
B、,与被开方数相同,故是同类二次根式,选项正确;
C、,与被开方数不同,故不是同类二次根式,选项错误;
D、是整数,不是二次根式,故选项错误.
所以B选项是正确的.【题目点拨】本题主要考查同类二次根式的定义,正确对根式进行化简,以及正确理解同类二次根式的定义是解决问题的关键.12、D【解题分析】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.二、填空题(每题4分,共24分)13、【解题分析】
因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP最短,求出此时PC的长度便可.【题目详解】解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,
则AO=OP′=OB=AB=2,
∵AD=2,∠BAD=90°,
∴OD=2,∠ADC=∠AOD=∠ODC=45°,
∴DP′=OD-OP′=2-2,
过P′作P′E⊥CD于点E,则
P′E=DE=DP′=2-,
∴CE=CD-DE=+2,
∴CP′==.
故答案为.【题目点拨】本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.14、3≤S≤1.【解题分析】
根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.【题目详解】∵点A、B的坐标分别为(-5,0)、(-2,0),∴AB=3,y=-2x2+4x+8=-2(x-1)2+10,∴顶点D(1,10),由图象得:当0≤x≤1时,y随x的增大而增大,当1≤x≤3时,y随x的增大而减小,∴当x=3时,即m=3,P的纵坐标最小,y=-2(3-1)2+10=2,此时S△PAB=×2AB=×2×3=3,当x=1时,即m=1,P的纵坐标最大是10,此时S△PAB=×10AB=×10×3=1,∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤1;故答案为3≤S≤1.【题目点拨】本题考查了二次函数的增减性和对称性,及图形和坐标特点、三角形的面积,根据P的纵坐标确定△PAB的面积S的最大值和最小值是本题的关键.15、【解题分析】
先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.【题目详解】如图,∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故答案为.【题目点拨】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16、y=x+9.【解题分析】
根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.【题目详解】∵OC=9,,∴BC=15,∵四边形OABC是矩形,∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,∴C(0,9),∵折叠,∴B′C=BC=15,B′D=BD,在Rt△COB′中,OB′==12,∴AB′=15-12=3,设AD=m,则B′D=BD=9-m,Rt△AB′D中,AD2+B′A2=B′D2,即m2+32=(9-m)2,解得m=4,∴D(15,4)设CD所在直线解析式为y=kx+b,把C、D两点坐标分别代入得:,解得:,∴CD所在直线解析式为y=x+9,故答案为:y=x+9.【题目点拨】本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.17、【解题分析】
根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【题目详解】解:如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=3,∠D=90°,
在Rt△ADE中,AE=∵S△ABE=S矩形ABCD=3=•AE•BF,
∴BF=.故答案为:.【题目点拨】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.18、-1【解题分析】
先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【题目详解】解:∵菱形的两条对角线的长分别是6和4,
∴C(-3,4),
∵点C在反比例函数y=的图象上,∴k=(-3)×4=-1.
故答案为:-1【题目点拨】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.三、解答题(共78分)19、的长为15米【解题分析】
设AB=xm,列方程解答即可.【题目详解】解:设AB=xm,则BC=(50-2x)m,根据题意可得,,解得:,当时,,故(不合题意舍去),答:的长为15米.【题目点拨】此题考查一元二次方程的实际应用,正确理解题意是列方程的关键.20、△ABC是等腰三角形;理由见解析【解题分析】
首先将已知等式进行因式分解,然后由三角形三边都大于0,解其方程得到,即可判定.【题目详解】∵,,是的三边,都大于0∴∴△ABC是等腰三角形.【题目点拨】此题主要考查因式分解的应用,利用三角形三边都大于0,解其方程即可解题.21、(1)补图详见解析,50;(2)72°;(3)1【解题分析】
(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.【题目详解】(1)=50,答:参加这次调查的学生人数为50人,羽毛球的人数=50-14-10-8=8人补全条形统计图如图所示:(2)×360°=72°.答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.(3)1600×=1.答:估计该校选择“足球”项目的学生有1人.【题目点拨】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1);(2)公路运输方式运送的牛奶多,铁路运输方式所需用较少.【解题分析】分析:(1)由总价=单价×数量+其他费用,就可以得出y与x之间的函数关系式;(2)将y=1500或x=1500分别代入(1)的解析式就可以求出结论;详解:(1),(2)解得:,解得:.∵3000>2500,∴公路运输方式运送的牛奶多,∴(元),(元).∵1050>900,∴铁路运输方式所需费用较少.点睛:本题考查了单价×数量=总价的运用,由函数值求自变量的值及由自变量的值求函数值的运用,有理数大小比较的运用,分类讨论思想的运用,解答时求出函数的解析式是关键.23、(1)表格数据90,图见解析;(2)126°;(3)B当选,理由见解析.【解题分析】试题分析:(1)由条形统计图可知,A的口试成绩为90分,填入表中即可;(2)由图2中A所占的百分比为35%可知,在图2中A所占的圆心角为:360°×35%;(3)按:最后成绩=笔试成绩×40%+口试成绩×40%+得票成绩×20%分别计算出三人的成绩,再看谁的成绩最高,即可得到本题答案.试题解析:(1)由条形统计图可知:A的口试成绩为90分,填入表格如下:竞选人ABC笔试859590口试908085(2)由图2可知,A所占的百分比为35%,∴在图2中,A所占的圆心角为:360°×35%=126°;(3)由题意可知:A的最后得分为:85×40%+90×40%+200×35%×20%=84(分),B的最后得分为:95×40%+80×40%+200×40%×20%=86(分),C的最后得分为:90×40%+85×40%+200×25%×20%=80(分),∵86>84>80,∴根据成绩可以判定B当选.24、m+n+p=0.【解题分析】试题分析:把m,n,p看成是未知数,本题已知两个方程求三个未知数,因此可以采用主元法,将其中一个未知数看成常数,另外两个当作未知数进行解答,本题由m-n=8,可得:m=n+8,把m=n+8代入mn+p2+16=0,得n2+8n+16+p2=0,即(n+4)2+p2=0,根据非负数的非负性质可求出n=-4,p=0,所以m=4,因此m+n+p=4+(-4)+0=0.因为m-n=8,所以m=n+8.将m=n+8代入mn+p2+16=0中,得n(n+8)+p2+16=0,所以n2+8n+16+p2=0,即(n+4)2+p2=0.又因为(n+4)2≥0,p2≥0,所以,解得,所以m=n+8=4,所以m+n+p=4+(-4)+0=0.25、(1)15(2)方案一:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度河砂运输物流服务合同
- 二零二五年度建筑工程施工与劳务派遣借款合同
- 二零二五年度新型环保材料房屋建造服务合同
- 二零二五年度新能源车辆租赁合同规范范本
- 二零二五年度高科技研发成果转化合同示范文本
- 二零二五版大型商业综合体玻璃幕墙施工合同
- 2025年度金融科技平台服务合同范本
- 二零二五年度食品饮料采购合同规范文本
- 2025版废纸处理与销售一体化合同
- 2025版体育场馆场地租赁安全保障合同
- 麻将馆创业计划书
- 燃气间管理制度
- 关联速度之绳杆连接、接触点模型-高考物理一轮复习模型(原卷版)
- 二级妇幼保健院建设规划与配置标准指南
- 2025小学语文新课程标准考试测试卷及答案
- DB1301T540-2024养老服务机构老年人健康档案书写规范
- T-GXDSL 027-2024 全阻燃耐超低温组合式板材技术规范
- 学校五年发展规划(2025-2029年):锁定瓶颈深挖潜精耕细作创新高
- 肉鸭饲养流程
- 酒店智能化施工方案
- 二零二五年度环保包装袋回收与再利用合作协议2篇
评论
0/150
提交评论