2024届河南省商水县联考八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
2024届河南省商水县联考八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
2024届河南省商水县联考八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
2024届河南省商水县联考八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
2024届河南省商水县联考八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省商水县联考八年级数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点的位置所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列二次概式中,最简二次根式是()A. B. C. D.3.下列汽车标志中,是中心对称图形的是()A. B. C. D.4.已知一次函数b是常数且,x与y的部分对应值如下表:x0123y6420那么方程的解是A. B. C. D.5.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,2 D.1,6.若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=(60-x)(0<x<60) D.y=(60-x)(0<x<30)7.下列图案中,是中心对称图形的是()A. B.

C. D.8.如图,函数和的图像交于点,则根据图像可得不等式的解集是()A. B. C. D.9.点位于平面直角坐标系中的().A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列函数中,表示y是x的正比例函数的是()A.y=﹣0.1x B.y=2x2 C.y2=4x D.y=2x+111.已知点和点在函数的图像上,则下列结论中正确的()A. B. C. D.12.如图,□ABCD中,∠C=100°,BE平分∠ABC,则∠AEB的度数为()A.60° B.50° C.40° D.30°二、填空题(每题4分,共24分)13.如图,矩形ABCD的对角线AC与BD相交于点O,CE//BD,DE//AC.若AD=23,AB=2,则四边形OCED的面积为___14.某病毒的直径为0.00000016m,用科学计数法表示为______________.15.如图,在△ABC中,AB=BC=4,S△ABC=4,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为_______16.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.17.如图,在菱形中,,点是边的中点,是对角线上的一个动点,若,则的最小值是_____.18.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.三、解答题(共78分)19.(8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.20.(8分)反比例函数的图象经过、、两点,试比较m、n大小.21.(8分)如图,在四边形ABCD中,BD为一条对角线,且,,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分,,求AC的长.22.(10分)已知满足.(1)求的值;(2)求的值.23.(10分)某班进行了一次数学測验,将成绩绘制成频数分布表和频数直方图的一部分如下:成绩频数(人数)频率(1)在频数分布表中,的值为________,的值为________;(2)将频数直方图补充完整;(3)成绩在分以上(含)的学生人数占全班总人数的百分比是多少?24.(10分)已知深港两地的高铁站深圳北、九龙西两站相距约40km.现高铁与地铁冋时从深圳北出发驶向九龙西,高铁的平均速度比地铁快70km/h,当高铁到达九龙西站时,地铁恰好到达距离深圳北站12km处的福田站,求高铁的平均速度.(不考虑换乘时间).25.(12分)如图,直线与x轴、y轴分别交于点A和点B,点C在线段AB上,点D在y轴的负半轴上,C、D两点到x轴的距离均为1.(1)点C的坐标为,点D的坐标为;(1)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.26.电话计费问题,下表中有两种移动电话计费方式:温馨揭示:方式一:月使用费固定收(月收费:38元/月);主叫不超限定时间不再收费(80分钟以内,包括80分钟);主叫超时部分加收超时费(超过部分0.15元/);被叫免费。方式二:月使用费0元(无月租费);主叫限定时间0分钟;主叫每分钟0.35元/;被叫免费。(1)设一个月内用移动电话主叫时间为,方式一计费元,方式二计费元。写出和关于的函数关系式。(2)在平面直角坐标系中画出(1)中的两个函数图象,记两函数图象交点为点,则点的坐标为_____________________(直接写出坐标,并在图中标出点)。(3)根据(2)中函数图象,请直接写出如何根据每月主叫时间选择省钱的计费方式。

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

观察题目,根据象限的特点,判断出所求的点的横纵坐标的符号;接下来,根据题目的点的坐标,判断点所在的象限.【题目详解】∵点的横坐标是负数,纵坐标是正数,

∴在平面直角坐标系的第二象限,

故选:B.【题目点拨】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解题分析】

根据最简二次根式的定义即可求解.【题目详解】A.=2,故错误;B.=根号里含有小数,故错误;C.为最简二次根式,正确;D.=2,故错误;故选C.【题目点拨】此题主要考查最简二次根式定义,解题的关键是熟知最简二次根式的特点.3、D【解题分析】

根据中心对称图形的概念即可解答.【题目详解】选项A,旋转180°,与原图形不能够完全重合,不是中心对称图形;选项B,旋转180°,不能与原图形能够完全重合,不是中心对称图形;选项C,旋转180°,不能与原图形能够完全重合,不是中心对称图形;选项D,旋转180°,能与原图形能够完全重合,是中心对称图形;故选D.【题目点拨】本题考查了中心对称图形的概念,熟练运用中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形)是解决问题的关键.4、C【解题分析】

因为一次函数b是常数且,x与y的部分对应值如表所示,求方程的解即为y=0时,对应x的取值,根据表格找出y=0时,对应x的取值即可求解.【题目详解】根据题意可得:的解是一次函数中函数值y=0时,自变量x的取值,所以y=0时,x=1,所以方程的解是x=1,故选C.【题目点拨】本题主要考查一元一次方程与一次函数的关系,解决本题的关键是要熟练掌握一次函数与一元一次方程的关系.5、C【解题分析】

求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【题目详解】解:A.42B.22C.12D.12故选:C.【题目点拨】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断是解答此题的关键.6、D【解题分析】∵2y+x=60,∴y=(60-x)(0<x<30).故选D.7、D【解题分析】

根据中心对称图形的定义逐一进行分析判断即可.【题目详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【题目点拨】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.8、C【解题分析】

根据一次函数的图象和两函数的交点坐标即可得出答案【题目详解】解:从图象得到,当x>-2时,的图象在函数y=ax-3的图象上∴不等式3x+b>ax-3的解集是x>-2,故选:C【题目点拨】此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象9、A【解题分析】

本题根据各象限内点的坐标的特征即可得到答案【题目详解】解:∵点的横纵坐标都是正的∴,点P在第一象限故选A【题目点拨】本题考查平面直角坐标系中四个象限内点的横纵坐标的正负,准确区分为解题关键10、A【解题分析】

A选项:y=-0.1x,符合正比例函数的含义,故本选项正确.

B选项:y=2x2,自变量次数不为1,故本选项错误;

C选项:y2=4x,y不是x的函数,故本选项错误;

D选项:y=2x+1是一次函数,故本选项错误;

故选A.11、B【解题分析】

根据一次函数的增减性可判断m、n的大小.【题目详解】∵一次函数的比例系数为0∴一次函数y随着x的增大而增大∵-1<1∴m<n故选:B【题目点拨】本题考查一次函数的增减性,解题关键是通过一次函数的比例系数判定y随x的变化情况.12、C【解题分析】

由平行四边形的性质得出AD∥BC,AB∥CD,由平行线的性质得出∠AEB=∠CBE,∠ABC=80°,由角平分线定义求出∠CBE=40°,即可得出答案.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠AEB=∠CBE,∠ABC+∠C=180°,∴∠ABC=180°-∠C=180°-100°=80°,∵BE平分∠ABC,∴∠CBE=∠ABC=40°,∴∠AEB=40°;故选:C.【题目点拨】本题考查了平行四边形的性质、平行线的性质等知识;熟练掌握平行四边形的性质是解题的关键.二、填空题(每题4分,共24分)13、2【解题分析】

连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.【题目详解】解:连接OE,与DC交于点F,

∵四边形ABCD为矩形,

∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,

∵OD∥CE,OC∥DE,

∴四边形ODEC为平行四边形,

∵OD=OC,

∴四边形OCED为菱形,

∴DF=CF,OF=EF,DC⊥OE,

∵DE∥OA,且DE=OA,

∴四边形ADEO为平行四边形,

∵AD=23,AB=2,

∴OE=23,CD=2,

则S菱形OCED=12OE•DC=12×23×2=23【题目点拨】本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.14、1.6×10-7m.【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:0.00000016m=1.6×10-7m.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15、2【解题分析】

试题解析::如图,过A作AH⊥BC交CB的延长线于H,∵AB=CB=4,S△ABC=4,∴AH=2,∴cos∠HAB=,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,∵∠BAC=∠C=30°,作点P关于直线AC的对称点P′,过P′作P′Q⊥BC于Q交AC于K,则P′Q的长度=PK+QK的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH是矩形,∴P′Q=AH=2,即PK+QK的最小值为2.【题目点拨】本题考查了轴对称确定最短路线问题,矩形的性质,解直角三角形,熟记利用轴对称确定最短路线的方法是解题的关键.16、0.1【解题分析】

利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【题目详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,

∴第1组到第4组的频率是:(5+7+11+13)0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1-0.5625-0.125=0.1故答案为:0.1.【题目点拨】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.17、【解题分析】

找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,求出即可.【题目详解】连接DE交AC于P,连接DB,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠ABC=120°,∴∠BAD=60°,∵AD=AB,∴△ABD是等边三角形,∵AE=BE,∴DE⊥AB(等腰三角形三线合一的性质).在Rt△ADE中,DE==.∴PB+PE的最小值为.故答案为.【题目点拨】本题主要考查轴对称-最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.18、1.【解题分析】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,

∴AC=∴AC+BC=3+4=1米.

故答案是:1.三、解答题(共78分)19、(1)50;(2)2【解题分析】

(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;(2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.【题目详解】(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)(2)设小明放入红球x个.根据题意得:解得:x=2(个).经检验:x=2是所列方程的根.答:小明放入的红球的个数为2.【题目点拨】本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.20、【解题分析】

根据反比例函数的图象经过可求得k的值,即可得反比例函数的解析式,再将、代入反比例函数的解析式,求得m、n的值,比较即可解答.【题目详解】∵反比例函数,它的图象经过,,,∴,将B,C两点代入反比例函数得,,,∴.【题目点拨】本题考查了反比例函数图象上点的坐标特征,根据反比例函数图象上点的坐标特征求得反比例函数的解析式是解决问题的关键.21、(1)详见解析(2)【解题分析】

(1)题干中由且可知,一组对边平行且相等的四边形是平行四边形,则四边形BCDE是平行四边形,又知BE是直角三角形斜边的中线,直角三角形斜边的中线等于斜边的一半,则得到BE=ED,从而再用一组邻边相等的平行四边形是菱形证明即可.(2)通过DE∥BC和AC平分,可得到∠BAC=∠ACB,从而由等角对等边得到AB=BC=1,则此时直角三角形ABD,有一个执教不是斜边的一半,则可知这个直角边对应的角是30°,找到30°才是题目的突破口,然后依次得到角度的关系,证明得到三角形ACD是直角三角形,再用勾股定理解得AC的长.【题目详解】(1)证明:∵DE∥BC且DE=BC(已知)∴四边形BCDE是平行四边形(一组对边平行且相等的四边形是平行四边形)又∵E为直角三角形斜边AD边的中点(已知)∴BE=AD,即BE=DE(直角三角形斜边的中线等于斜边的一半)∴平行四边形四边形BCDE是菱形(一组邻边相等的平行四边形是菱形)(2)连接AC,如图可知:∵DE∥BC(已知)∴∠DAC=∠ACB(两直线平行内错角相等)又∵AC平分(已知)∴∠BAC=∠DAC(角平分线的定义)即∠BAC=∠ACB(等量代换)∴AB=BC=1(等角对等边)由(1)可知:AD=2ED=2BC=2在直角三角形中AB=1,AD=2∴∠ADB=30°(直角三角形中,若一个直角边是斜边一半,则这个直角边所对的角是30°)∴∠BAD=60°(直角三角形两锐角互余)即∠CAD=∠BAD=30°(角平分线的定义),∠ADC=2∠ADB=60°(菱形的性质)所以三角形ADC是直角三角形.则由可知:【题目点拨】本题为综合性的几何证明试题,运用到的重点知识点有,菱形的判定定理,菱形的性质,直角三角形斜边中线定理,30°角定理,勾股定理,注意证明过程中,条理清楚,因果对应,灵活运用才是解题关键.22、(1);(2)13【解题分析】

先根据绝对值和平方的非负性可得a+2b=3,ab=-1,(1)先根据幂的性质进行化简,整体代入可解决问题;(2)配方后整体代入可解决问题.【题目详解】由题得:(1)(2)【题目点拨】本题考查了绝对值和平方的非负性、完全平方公式及幂的性质,利用整体代入的思想解决问题是本题的关键.23、(1)10,0.1;(2)答案见解析;(3)占全班总人数百分比为.【解题分析】

(1)先计算参加数学測验的总人数,根据a=总人数-各分数段的人的和计算即可得解,b=1-各分数段的频率的和计算即可得解;(2)根据(1)补全直方图;(3)求出成绩在分以上(含)的学生人数除以总人数即可.【题目详解】(1)∵参加数学測验的总人数为:∴,(2)如图:该直方图为所求作..(3)成绩在分以上的学生人数为人,全班总人数为人,占全班总人数百分比为【题目点拨】本题考查了频数(率)分布直方图及频数(率)分布表;概率公式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论