2024届内蒙古巴彦淖尔市第五中学八年级数学第二学期期末质量检测模拟试题含解析_第1页
2024届内蒙古巴彦淖尔市第五中学八年级数学第二学期期末质量检测模拟试题含解析_第2页
2024届内蒙古巴彦淖尔市第五中学八年级数学第二学期期末质量检测模拟试题含解析_第3页
2024届内蒙古巴彦淖尔市第五中学八年级数学第二学期期末质量检测模拟试题含解析_第4页
2024届内蒙古巴彦淖尔市第五中学八年级数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古巴彦淖尔市第五中学八年级数学第二学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部点的位置,在处测得旗杆顶端的仰角为60°若测角仪的高度是,则旗杆的高度约为()(精确到.参考数据:)A. B. C. D.2.一组数据3,5,4,7,10的中位数是()A.4 B.5 C.6 D.73.下列因式分解正确的是()A.x3﹣x=x(x2﹣1) B.x2+y2=(x+y)(x﹣y)C.(a+4)(a﹣4)=a2﹣16 D.m2+4m+4=(m+2)24.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为A. B. C. D.5.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选()参加.A.甲 B.乙 C.甲、乙都可以 D.无法确定6.已知是整数,则正整数n的最小值是()A.4 B.6 C.8 D.127.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.中位数 B.平均数 C.方差 D.极差8.若x>y,则下列不等式中不一定成立的是()A.x﹣1>y﹣1 B.2x>2y C.x+1>y+1 D.x2>y29.在一次数学测试中,将某班51名学生的成绩分为5组,第一组到第四组的频率之和为1.8,则第5组的频数是()A.11 B.9 C.8 D.710.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,AC=12,菱形ABCD的面积为96,则OH的长等于()A.6 B.5 C.4 D.311.无论x取什么值,下面的分式中总有意义的是()A. B. C. D.12.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6m二、填空题(每题4分,共24分)13.函数中,自变量的取值范围是.14.A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇。如图是它们离A城的距离(km)与行驶时间(h)之间的函数图象。当它们行驶7(h)时,两车相遇,则乙车速度的速度为____________.15.如图,函数y=ax+4和y=bx的图象相交于点A,则不等式bx≥ax+4的解集为_____.16.矩形的一边长是3.6㎝,两条对角线的夹角为60º,则矩形对角线长是___________.17.如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE=______________cm.18.若,是一元二次方程的两个实数根,则__________.三、解答题(共78分)19.(8分)如图①,矩形中,,,点是边上的一动点(点与、点不重合),四边形沿折叠得边形,延长交于点.图①图②(1)求证:;(2)如图②,若点恰好在的延长线上时,试求出的长度;(3)当时,求证:是等腰三角形.20.(8分)如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;(2)图②中若DE︰EC=3︰1,计算BF︰FC=;图③中若DE︰EC=4︰1,计算BF︰FC=;(3)图④中若DE︰EC=︰1,猜想BF︰FC=;并证明你的结论21.(8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像线段AB表示甲出发不足2小时因故停车检修),请根据图像所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)22.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.23.(10分)已知一次函数y=kx+b的图象与直线y=﹣2x+1的交点M的横坐标为1,与直线y=x﹣1的交点N的纵坐标为2,求这个一次函数的解析式.24.(10分)“赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表组别成绩x(分)频数(人数)第1组60≤x<684第2组68≤x<768第3组76≤x<8412第4组84≤x<92a第5组92≤x<10010第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:(1)填空:a=所抽取的40名学生比赛成绩的中位数是(2)请将频数分布直方图补充完整(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?25.(12分)如图,在▱ABCD中,各内角的平分线分别相交于点E,F,G,H.(1)求证:△ABG≌△CDE;(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.26.已知x、y满足方程组,求代数式的值.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

过D作DE⊥AB,根据矩形的性质得出BC=DE=5m根据30°所对的直角边等于斜边的一半,可得AD=10,根据勾股定理可得的长,根据AB=AE+BE=AE+CD算出答案.【题目详解】过D作DE⊥AB于点E,∵在D处测得旗杆顶端A的仰角为60°,∴∠ADE=60°.∴∠DAE=30°.∵BC=DE=5m,AD=2DE=10∴,∴AB=AE+BE=AE+CD=8.65+1.6=10.25m≈10.3m.故答案为:D【题目点拨】本题考查了仰角俯角问题,正确作出辅助线,构造出30°直角三角形模型是解决问题的关键.2、B【解题分析】

根据中位数的概念求解.【题目详解】这组数据按照从小到大的顺序排列为:3,4,1,7,10,则中位数为:1.故选:B.【题目点拨】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、D【解题分析】

逐项分解因式,即可作出判断.【题目详解】A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;B、原式不能分解,不符合题意;C、原式不是分解因式,不符合题意;D、原式=(m+2)2,符合题意,故选:D.【题目点拨】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.4、B【解题分析】【分析】直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.【题目详解】,,,▱ABCD的对角线AC与BD相交于点O,E是边CD的中点,是的中位线,,,故选B.【题目点拨】本题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.5、A【解题分析】试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;方差为:15乙的平均数为:(10+8+9+7+1)÷5=8;方差为:15∵0.8<2,∴选择甲射击运动员,故选A.考点:方差.6、B【解题分析】

因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【题目详解】∵且,且是整数,∴是整数,即1n是完全平方数,∴n的最小正整数值为1.故选B.【题目点拨】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.7、A【解题分析】

根据中位数的定义解答可得.【题目详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【题目点拨】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.8、D【解题分析】

根据不等式的性质逐一进行判断,选项A,在不等式x>y两边都减1,不等号的方向不变,即可判断A的正确性,选项B,在不等式x>y两边都乘上2,不等号的方向不变,即可判断B的正确性;选项C,在不等式x>y两边都加上1,不等号的方向不变,即可判断C的正确性,选项D,可举例说明,例如当x=1,y=-2时,x>y,但x2<y2,故可判断D的正确性,据此即可得到答案.【题目详解】A、不等式的两边减1,不等号的方向不变,故A不符合题意;B、不等式的两边乘2,不等号的方向不变,故B不符合题意;C、不等式的两边都加1,不等号的方向不变,故C不符合题意;D、当0<x<1,y<﹣1时,x2<y2,故D符合题意;故选D.【题目点拨】本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键;9、A【解题分析】

频率总和为1,由此求出第五组的频率,然后由频率是频数与总数之比,求出频数即可.【题目详解】解:第五组的频率为,所以第五组的频数为.故答案为:A【题目点拨】本题考查了频率频数,掌握频率频数的定义是解题的关键.10、B【解题分析】

由菱形的面积和对角线AC的长度可求出BD的长,再由勾股定理可求出AD的长,因为菱形的对角线互相垂直得出∠AOD=90°,然后根据直角三角形斜边上的中线性质即可得出结果.【题目详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∵菱形ABCD的面积为96,∴AC•BD=96,∴BD=16,∴AD==10,∵∠AOD=90°,H为AD边中点,∴OH=AD=1.故选B.【题目点拨】本题考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解决问题的关键.11、B【解题分析】

根据分母等于0,分式无意义;分母不等于0,分式有意义对各选项举反例判断即可【题目详解】解:A.当x=0时,分式无意义,故本选项错误;B.对任意实数,x2+1≠0,分式有意义,故本选项正确;C.当x=0时,分母都等于0,分式无意义,故本选项错误;D.当x=-1时,分式无意义,故本选项错误.故选B【题目点拨】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12、D【解题分析】

根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【题目详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故选:D.【题目点拨】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.二、填空题(每题4分,共24分)13、.【解题分析】

求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【题目详解】依题意,得x-1≥0,

解得:x≥1.【题目点拨】本题考查的知识点为:二次根式的被开方数是非负数.14、75千米/小时【解题分析】

甲返程的速度为:600÷(14−6)=75km/h,设已车的速度为x,由题意得:600=7x+75,即可求解.【题目详解】解:甲返程的速度为:600÷(14−6)=75km/h,设乙车的速度为x,由题意得:600=7x+75,解得:x=75,故答案为75千米/小时.【题目点拨】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.15、x≥2【解题分析】

根据一元一次函数和一元一次方程的关系,从图上直接可以找到答案.【题目详解】解:由bx≥ax+4,即函数y=bx的图像位于y=ax+4的图像的上方,所对应的自变量x的取值范围,即为不等式bx≥ax+4的解集.【题目点拨】本题参数较多,用代数的方法根本不能解决,因此数形结合成为本题解答的关键.16、7.2cm或cm【解题分析】①边长3.6cm为短边时,

∵四边形ABCD为矩形,

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB=3.6cm,

∴AC=BD=2OA=7.2cm;

②边长3.6cm为长边时,

∵四边形ABCD为矩形

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB,BD=2OB,∠ABD=60°,

∴OB=AB=,∴BD=;故答案是:7.2cm或cm.17、【解题分析】试题分析:此题考查了翻折变换、勾股定理及锐角三角函数的定义,解答本题的关键是掌握翻折变换前后对应边相等、对应角相等,难度一般.在RT△ABC中,可求出AB的长度,根据折叠的性质可得出AE=EB=AB,在RT△ADE中,利用tanB=tan∠DAE即可得出DE的长度.∵AC=6,BC=8,∴AB==10,tanB=,由折叠的性质得,∠B=∠DAE,tanB=tan∠DAE=,AE=EB=AB=5,∴DE=AEtan∠DAE=.故答案为.考点:翻折变换(折叠问题).18、【解题分析】

根据根与系数的关系可得出,将其代入中即可求出结论.【题目详解】解:∵x1,x2是一元二次方程x2+x-2=0的两个实数根,

∴,

∴.

故答案为:.【题目点拨】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2);(3)证明见解析【解题分析】

(1)由矩形的性质和平行线的性质得出∠BAP=∠APN,由折叠的性质得:∠BAP=∠PAN,得出∠APN=∠PAN,即可得出NA=NP;(2)由矩形的性质得出CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,由勾股定理得出AE==5,求出DE=AE-AD=2,设DP=x,则PE=PC=4-x,在Rt△PDE中,由勾股定理得出方程,解方程即可;(3)过点D作GH∥AF,交EF于G,交AP于H,则GH∥AF∥PE,证出△PDH是等边三角形,得出DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,证出DH=AH,得出AH=PH,由平行线分线段成比例定理得出,得出EG=FG,再由线段垂直平分线的性质得出DE=DF即可.【题目详解】(1)证明;∵四边形ABCD是矩形,∴AB∥CD,∴∠BAP=∠APN,由折叠的性质得:∠BAP=∠PAN,∴∠APN=∠PAN,∴NA=NP;(2)解:∵四边形ABCD是矩形,∴CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,∴∠PDE=90°,由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,∴AE==5,∴DE=AE-AD=2,设DP=x,则PE=PC=4-x,在Rt△PDE中,由勾股定理得:DP2+DE2=PE2,即x2+22=(4-x)2,解得:,即;(3)证明:过点D作GH∥AF,交EF于G,交AP于H,如图所示:则GH∥AF∥PE,∴∠PHD=∠NAH,∵∠PAD=30°,∴∠APD=90°-30°=60°,∠BAP=90°-30°=60°,∴∠PAN=∠BAP=60°,∴∠PHD=60°=∠APD,∴△PDH是等边三角形,∴DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,∴DH=AH,∴AH=PH,∵GH∥AF∥PE,∴,∴EG=FG,又∵GH⊥EF,∴DE=DF,∴△DEF是等腰三角形.【题目点拨】本题考查了矩形的性质、翻折变换的性质、等腰三角形的判定、勾股定理、等边三角形的判定与性质、平行线分线段成比例定理、线段垂直平分线的性质等知识;本题综合性强,熟练掌握翻折变换的性质和等腰三角形的判定是解题的关键.20、(1)根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)【解题分析】试题分析:根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可.解:(1)∵∠BAF+∠AFB=90°,∠CFE+∠AFB=90°∴∠BAF=∠CFE∵∠B=∠C=90°∴△ABF∽△FCE∴BF︰CE=AB︰FC=AF︰FE∴AB︰AF=BF︰FE∵∠B=∠AFE=90°∴△ABF∽△AFE∴△ABF∽△AFE∽△FCE∵DE︰EC=2︰1∴FE︰EC=2︰1∴BF︰FC=1︰1(2)若DE︰EC=3︰1,则BF︰FC=1︰2;若DE︰EC=4︰1,计算BF︰FC=1︰3;(3)∵DE︰EC=︰1∴FE︰EC=︰1∴BF︰FC=1︰(n-1).考点:相似三角形的综合题点评:相似三角形的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.21、(1)y=1x﹣120;(2)两车在途中第二次相遇时它们距出发地的路程为240千米;(3)乙车出发1小时,两车在途中第一次相遇.【解题分析】分析:(1)由图可看出,乙车所行路程y与时间x的成一次函数,使用待定系数法可求得一次函数关系式;(2)由图可得:交点F表示第二次相遇,F点横坐标为6,代入(1)中的函数即可求得距出发地的路程;(3)交点P表示第一次相遇,即甲车故障停车检修时相遇,点P的横坐标表示时间,纵坐标表示离出发地的距离,要求时间,则需要把点P的纵坐标先求出;从图中看出,点P的纵坐标与点B的纵坐标相等,而点B在线段BC上,BC对应的函数关系可通过待定系数法求解,点B的横坐标已知,则纵坐标可求.详解:(1)设乙车所行使路程y与时间x的函数关系式为y=k1x+b1,把(2,0)和(10,480)代入,得:,解得:,故y与x的函数关系式为y=1x﹣120;(2)由图可得:交点F表示第二次相遇,F点的横坐标为6,此时y=1×6=120=240,则F点坐标为(6,240),故两车在途中第二次相遇时它们距出发地的路程为240千米;(3)设线段BC对应的函数关系式为y=k2x+b2,把(6,240)、(8,480)代入,得:,解得:,故y与x的函数关系式为y=120x﹣480,则当x=4.5时,y=120×4.5﹣480=1.可得:点B的纵坐标为1.∵AB表示因故停车检修,∴交点P的纵坐标为1,把y=1代入y=1x﹣120中,有1=1x﹣120,解得x=3,则交点P的坐标为(3,1).∵交点P表示第一次相遇,∴乙车出发3﹣2=1小时,两车在途中第一次相遇.点睛:本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从坐标系中提取信息的能力,是道综合性较强的代数应用题,对学生能力要求比较高.22、(1)详见解析;(2)1.【解题分析】

(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.23、y=x﹣.【解题分析】

依据条件求得交点M的坐标是(1,﹣1),交点N的坐标是(3,2),再根据待定系数法即可得到一次函数的解析式.【题目详解】解:把x=1代入y=﹣2x+1中,可得y=﹣1,故交点M的坐标是(1,﹣1);把y=2代入y=x﹣1中,得x=3,故交点N的坐标是(3,2),设这个一次函数的解析式是y=kx+b,把(1,﹣1),(3,2)代入,可得,解得,故所求函数的解析式是y=x﹣.【题目点拨】本题考查了两直线相交的问题,解题的关键是理解交点是两条直线的公共点.24、(1)6,78;(2)见解析;(3)240名【解题分析】

(1)根据题意和频数分布表中的数据可以求得a的值和这组数据的中位数;(2)根据(1)中a的值和分布表中成绩为76≤x<84的频数可以将频数分布直方图补充完整;(3)根据频数分布表中的数据可以计算出进入决赛的学生中有多少名学生的比赛成绩为优秀.【题目详解】解:(1)a=40﹣4﹣8﹣12﹣10=6,∵第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,∴中位数是78,故答案为:6,78;(2)由(1)知a=6,补全的频数分布直方图如右

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论