2024届贵州省六盘水市六枝特区第九中学八年级数学第二学期期末教学质量检测模拟试题含解析_第1页
2024届贵州省六盘水市六枝特区第九中学八年级数学第二学期期末教学质量检测模拟试题含解析_第2页
2024届贵州省六盘水市六枝特区第九中学八年级数学第二学期期末教学质量检测模拟试题含解析_第3页
2024届贵州省六盘水市六枝特区第九中学八年级数学第二学期期末教学质量检测模拟试题含解析_第4页
2024届贵州省六盘水市六枝特区第九中学八年级数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省六盘水市六枝特区第九中学八年级数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形 B.菱形 C.矩形 D.正方形2.把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9) B.2(x﹣3)2C.2(x+3)(x﹣3) D.2(x+9)(x﹣9)3.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.等腰梯形 C.正方形 D.平行四边形4.点P(1,2)关于原点的对称点P′的坐标为(

)A.(2,1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,﹣1)5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx﹣k的图象大致是()A. B. C. D.6.一次函数的图象经过原点,则k的值为A.2 B. C.2或 D.37.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,38.如图,直线过点和点,则方程的解是()A. B. C. D.9.如图,矩形ABCD中,AB=8,BC=4,P,Q分别是直线AB,AD上的两个动点,点在边上,,将沿翻折得到,连接,,则的最小值为()A. B. C. D.10.若点,都在反比例函数的图象上,则与的大小关系是A. B. C. D.无法确定11.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm12.关于的一元二次方程(,是常数,且),()A.若,则方程可能有两个相等的实数根 B.若,则方程可能没有实数根C.若,则方程可能有两个相等的实数根 D.若,则方程没有实数根二、填空题(每题4分,共24分)13.已知一组数据4,,6,9,12的众数为6,则这组数据的中位数为_________.14.如图,、、、分别是四边形各边的中点,若对角线、的长都是,则四边形的周长是______.15.已知一次函数y=2x与y=-x+b的交点为(1,a),则方程组的解为______.16.已知点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,则(a+b)2014=_____.17.将矩形ABCD折叠,使得对角线的两个端点A.C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为______.18.如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.三、解答题(共78分)19.(8分)计算:(1)(﹣15)×××(﹣×)(2)++(3)(4)(﹣3)2+﹣(1+2)﹣(﹣3)020.(8分)化简:(.21.(8分)如图,直线y=x+与x轴相交于点B,与y轴相交于点A.(1)求∠ABO的度数;(2)过点A的直线l交x轴的正半轴于点C,且AB=AC,求直线的函数解析式.22.(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x的图象与反比例函数y=(x<0)的图象相交于点A(﹣4,m).(1)求反比例函数y=的解析式;(2)若点P在x轴上,AP=5,直接写出点P的坐标.23.(10分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.24.(10分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.25.(12分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标.(2)判断以A,B,A1,B1为顶点的四边形的形状,请直接在答卷上填写答案.26.定义:如果一元一次不等式①的解都是一元一次不等式②的解,那么称一元一次不等式①是一元一次不等式②的蕴含不等式.例如:不等式的解都是不等式的解,则是的蕴含不等式.(1)在不等式,,中,是的蕴含不等式的是_______;(2)若是的蕴含不等式,求的取值范围;(3)若是的蕴含不等式,试判断是否是的蕴含不等式,并说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【题目详解】由题意可得:四边形的四边形相等,故展开图一定是菱形.故选B.【题目点拨】此题主要考查了剪纸问题,对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.2、C【解题分析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选C.考点:提公因式法与公式法的综合运用.3、C【解题分析】

根据轴对称图形和中心对称图形的概念,即可求解.【题目详解】解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选:C.【题目点拨】掌握好中心对称图形与轴对称图形的概念是解题的关键.4、B【解题分析】

根据两个点关于原点对称时,它们的坐标符号相反可得答案.【题目详解】点P(1,2)关于原点的对称点P′的坐标为(-1,-2),故选B.【题目点拨】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.5、D【解题分析】

先根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,判断出k的符号,再根据一次函数的性质即可得出结论.【题目详解】解:正比例函数y=kx的函数值y随x的增大而减小,∴k<0,一k>0,∴一次函数y=kx-k的图像经过一、二、四象限故选D.【题目点拨】本题考查的是一次函数的图像与系数的关系,解题时注意:一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图像经过一、二、四象限.6、A【解题分析】

把原点坐标代入解析式得到关于k的方程,然后解方程求出k,再利用一次函数的定义确定满足条件的k的值.【题目详解】把(0,0)代入y=(k+1)x+k1-4得k1-4=0,解得k=±1,而k+1≠0,所以k=1.故选A.【题目点拨】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式,于是解决此类问题时把已知点的坐标代入解析式求解.注意一次项系数不为零.7、A【解题分析】

根据题意可知x=2,然后根据平均数、中位数的定义求解即可.【题目详解】∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=(2+2+2+4+4+7)÷6=1.5中位数为:(2+4)÷2=1.故选A【题目点拨】本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.8、B【解题分析】

一次函数y=kx+b的图象与x轴的交点横坐标就是kx+b=0的解.【题目详解】解:∵直线y=ax+b过点B(−2,0),∴方程ax+b=0的解是x=−2,故选:B.【题目点拨】此题主要考查了一次函数与一元一次方程,关键是掌握任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于确定已知直线y=ax+b与x轴的交点的横坐标的值.9、B【解题分析】

作点C关于AB的对称点H,连接PH,EH,由已知求出CE=6,CH=8,由勾股定理得出EH==10,由SAS证得△PBC≌△PBH,得出CP=PH,PF+PC=PF+PH,当E、F、P、H四点共线时,PF+PH值最小,即可得出结果.【题目详解】解:作点C关于AB的对称点H,连接PH,EH,如图所示:∵矩形ABCD中,AB=8,BC=4,DE=2,∴CE=CD−DE=AB−DE=6,CH=2BC=8,∴EH==10,在△PBC和△PBH中,,∴△PBC≌△PBH(SAS),∴CP=PH,∴PF+PC=PF+PH,∵EF=DE=2是定值,∴当E、F、P、H四点共线时,PF+PH值最小,最小值=10−2=8,∴PF+PD的最小值为8,故选:B.【题目点拨】本题考查翻折变换、矩形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.10、A【解题分析】

把所给点的横纵坐标代入反比例函数的解析式,求出、的值,比较大小即可.【题目详解】点在反比例函数的图象上,,点在反比例函数的图象上,,.故选:.【题目点拨】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.11、A【解题分析】由题意可知∠DFE=∠CDF=∠C=90°,DC=DF,∴四边形ECDF是正方形,∴DC=EC=BC-BE,∵四边形ABCD是矩形,∴BC=AD=10,∴DC=10-6=4(cm).故选A.12、C【解题分析】

求出∆=b2+8a,根据b2+8a的取值情况解答即可.【题目详解】∵,∴,∴∆=b2+8a,A.∵a>0,∴b2+8a>0,∴方程一定有两个相等的实数根,故A、B错误;C.当a<0,但b2+8a≥0时,方程有实根,故C正确,D错误.故选C.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.二、填空题(每题4分,共24分)13、1【解题分析】

根据众数的定义求出x,然后根据中位数的概念求解.【题目详解】解:∵数据4,x,1,9,12的众数为1,∴x=1,则数据重新排列为4,1,1,9,12,所以中位数为1,故答案为:1.【题目点拨】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14、【解题分析】

利用三角形中位线定理易得所求四边形的各边长都等于AC,或BD的一半,进而求四边形周长即可.【题目详解】∵E,F,G,H,是四边形ABCD各边中点∴HG=AC,EF=AC,GF=HE=BD∴四边形EFGH的周长是HG+EF+GF+HE=(AC+AC+BD+BD)=×(20+20+20+20)=40(cm).故答案为40cm.【题目点拨】本题考查了三角形的中位线定理,解决本题的关键是找到四边形的四条边与已知的两条对角线的关系.三角形中位线的性质为我们证明两直线平行,两条线段之间的数量关系又提供了一个重要的依据.15、【解题分析】

把(1,a)代入y=2x可确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标的横纵坐标,由此即可求解.【题目详解】解:把(1,a)代入y=2x得a=2,所以方程组的解为.故答案为:.【题目点拨】本题考查了一次函数与二元一次方程(组)的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16、1【解题分析】

关于x轴对称的点,横坐标相同,纵坐标互为相反数,可求出a,b,得到答案.【题目详解】解:点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,得a﹣1=2,b﹣1=﹣5,解得a=3,b=﹣4,(a+b)2014=(﹣1)2014=1,故答案为:1.【题目点拨】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.17、或2【解题分析】

分类讨论:当点E在线段AB上,连结CE,根据折叠的性质得到AE=CE=3,然后在Rt△BCE中,利用勾股定理计算BC;当点E在线段AB的延长线上,连结CE,根据折叠的性质得AE=CE=5,在Rt△BCE中,根据勾股定理计算BC.【题目详解】当点E在线段AB上,如图1,连结CE,∵AB=4,BE=1,∴AE=3,∵将矩形ABCD折叠,使得对角线的两个端点A.C重合,∴AE=CE=3,在Rt△BCE中,BC=;当点E在线段AB的延长线上,如图2,连结CE,∵AB=4,BE=1,∴AE=5,∵将矩形ABCD折叠,使得对角线的两个端点A.C重合,∴AE=CE=5,在Rt△BCE中,BC=,∴BC的长为或.【题目点拨】本题考查折叠问题,分情况解答是解题关键.18、①②③④【解题分析】

首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.【题目详解】∵△ABD和△ACE都是等边三角形,

∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.

∵F是AB的中点,∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.

∵∠BAC=30°,∠ACB=90°,AD=2AF.

∴BC=AB,∠ADF=∠BAC,

∴AF=BF=BC.

在Rt△ADF和Rt△BAC中

AD=BA,AF=BC,

∴Rt△ADF≌Rt△BAC(HL),

∴DF=AC,

∴AE=DF.

∵∠BAC=30°,

∴∠BAC+∠CAE=∠BAE=90°,

∴∠DFA=∠EAB,

∴DF∥AE,

∴四边形ADFE是平行四边形,故②正确;∴AD=EF,AD∥EF,设AC交EF于点H,

∴∠DAC=∠AHE.

∵∠DAC=∠DAB+∠BAC=90°,

∴∠AHE=90°,

∴EF⊥AC.①正确;

∵四边形ADFE是平行四边形,

∴2GF=2GA=AF.

∴AD=4AG.故③正确.

在Rt△DBF和Rt△EFA中

BD=FE,DF=EA,

∴Rt△DBF≌Rt△EFA(HL).故④正确,

故答案为:①②③④.【题目点拨】本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.三、解答题(共78分)19、(1)60;(2)5;(3)-1;(4)7.【解题分析】

(1)先根据二次根式进行化简,再进行乘法运算,即可得到答案;(2)先根据二次根式进行化简,再进行加法运算,即可得到答案;(3)将变形为,再根据平方差公式进行计算即可得到答案;(4)根据二次根式、零指数幂进行化简,再进行加减运算即可得到答案.【题目详解】(1)(﹣15)×××(﹣×)=(﹣15)×××(﹣×)=15××=60(2)5++=5++=++=5(3)===-1(4)(﹣3)2+﹣(1+2)﹣(﹣3)0=9+-1-2-1=7【题目点拨】本题考查二次根式、平方差公式和零指数幂,解题的关键是掌握二次根式、平方差公式和零指数幂.20、8-4【解题分析】【分析】运用平方差公式和完全平方公式可求出结果.【题目详解】解:原式=2﹣1+3﹣4+4=8﹣4.【题目点拨】本题考核知识点:整式运算.解题关键点:熟记平方差公式和完全平方公式.21、(1)∠ABO=60°;(2)【解题分析】

(1)根据函数解析式求出点A、B的坐标,然后在Rt△ABO中,利用三角函数求出tan∠ABO的值,继而可求出∠ABO的度数;(2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,得出点C的坐标,然后利用待定系数法求出直线l的函数解析式.【题目详解】解:(1)对于直线y=x+,令x=0,则y=,令y=0,则x=﹣1,故点A的坐标为(0,),点B的坐标为(﹣1,0),则AO=,BO=1,在Rt△ABO中,∵tan∠ABO=,∴∠ABO=60°;(2)在△ABC中,∵AB=AC,AO⊥BC,∴AO为BC的中垂线,即BO=CO,则C点的坐标为(1,0),设直线l的解析式为:y=kx+b(k,b为常数),则,解得:,即函数解析式为:y=﹣x+.【题目点拨】本题考查了待定系数法求一次函数解析式,涉及了的知识点有:待定系数法确定一次函数解析式,一次函数与坐标轴的交点,坐标与图形性质,熟练掌握待定系数法是解答本题的关键.22、(1)y=﹣;(2)P点的坐标是(﹣7,0)或(﹣1,0).【解题分析】

(1)先求出A的坐标,再代入反比例函数解析式求出即可;(2)根据勾股定理求出即可.【题目详解】(1)∵A(﹣4,m)在一次函数y=﹣x上,∴m=4,即A(﹣4,4),∵A在反比例函数y=(x<0)的图象上,∴k=﹣16,∴反比例函数y=的解析式是y=﹣;(2)∵Rt△ABP中,∠ABP=90°,AB=4,AP=5,∴BP==3,-4-3=-7,-4+3=-1,∴P点的坐标是(﹣7,0)或(﹣1,0).【题目点拨】本题考查了待定系数法求反比例函数解析式,勾股定理,熟练掌握相关内容是解题的关键.注意数形结合思想与分类讨论思想的运用.23、(1)证明见解析;(2)1+【解题分析】试题分析:(1)已知EF是DC的垂直平分线,可得DE=EC,DF=CF,∠EGC=∠FGC=90°,再由ASA证得△CGE≌△FCG,根据全等三角形的性质可得GE=GF,所以DE=EC=DF=CF,根据四条边都相等的四边形为菱形,即可判定四边形DFCE是菱形;(2)过D作DH⊥BC于H,根据30°直角三角形的性质求得BH=1;在Rt△DHB中,根据勾股定理求得DH的长,再判定△DHF是等腰直角三角形,即可得DH=FH=,即可求得BF的长.试题解析:(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CG,∴△CGE≌△FCG(ASA),∴GE=GF,∴DE=EC=DF=CF,∴四边形DFCE是菱形;(2)过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论