版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市第一六八中学2024届数学八年级第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列图形中是中心对称图形,但不是轴对称图形的是(
).A.正方形 B.菱形 C.矩形 D.平行四边形2.把分式中的x、y的值同时扩大为原来的2倍,则分式的值()A.不变 B.扩大为原来的2倍C.扩大为原来的4倍 D.缩小为原来的一半3.若=,则x的取值范围是()A.x<3 B.x≤3 C.0≤x<3 D.x≥04.如图,把矩形ABCD沿对角线BD折叠,重叠部分为△EBD,则下列说法可能错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE=30°5.已知点A、B的坐标分别为(2,5),(﹣4,﹣3),则线段AB的长为()A.9 B.10 C.11 D.126.已知不等式组的解集如图所示(原点未标出,数轴的单位长度为1),则的值为()A.4 B.3 C.2 D.17.“单词的记忆效率“是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图描述了某次单词复习中小华,小红小刚和小强四位同学的单词记忆效率y与复习的单词个数x的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是()A.小华 B.小红 C.小刚 D.小强8.不等式2x-1≤3的解集是()A.x≤1 B.x≤2 C.x≥1 D.x≤-29.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()A.()2013 B.()2014 C.()2013 D.()201410.小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是()A.13千米 B.14千米 C.15千米 D.16千米二、填空题(每小题3分,共24分)11.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.12.使代数式有意义的的取值范围是________.13.已知方程的解满足x﹣y≥5,则k的取值范围为_____.14.如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.15.若关于x的一元一次不等式组无解,则a的取值范围是_____.16.如图,一块矩形的土地被分成4小块,用来种植4种不同的花卉,其中3块面积分别是,,,则第四块土地的面积是____.17.一次函数的图象如图所示,则关于的不等式的解集为__________.18.如图,OC平分∠AOB,P在OC上,PD⊥OA于D,PE⊥OB于E.若PD=3cm,则PE=_____cm.三、解答题(共66分)19.(10分)闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.20.(6分)如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?21.(6分)孝感市委市政府为了贯彻落实国家的“精准扶贫”战略部署,组织相关企业开展扶贫工作,博大公司为此制定了关于帮扶A、B两贫困村的计划.今年3月份决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗.已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:目的地费用车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总运费为y元;①试求出y与x的函数解析式;②若运往A村的鱼苗不少于108箱,请你写出使总运费最少的货车调配方案,并求出最少运费.22.(8分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.23.(8分)如图,直线与x轴交于点,直线与x轴、y轴分别交于B、C两点,并与直线相交于点D,若.求点D的坐标;求出四边形AOCD的面积;若E为x轴上一点,且为等腰三角形,写出点E的坐标直接写出答案.24.(8分)如图,平行四边形中,,点、分别在、的延长线上,,,垂足为点,.(1)求证:是中点;(2)求的长.25.(10分)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池
修建费用(万元/个)
可供使用户数(户/个)
占地面积(m2/个)
A型
3
20
48
B型
2
3
6
政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.26.(10分)如图,在平面直角坐标系xOy中,直线ykxb与x轴相交于点A,与反比例函数在第一象限内的图像相交于点A(1,8)、B(m,2).(1)求该反比例函数和直线ykxb的表达式;(2)求证:ΔOBC为直角三角形;(3)设∠ACO=α,点Q为反比例函数在第一象限内的图像上一动点,且满足90°-α<∠QOC<α,求点Q的横坐标q的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.正方形、菱形、矩形均既是轴对称图形又是中心对称图形,平行四边形只是中心对称图形,故选D.考点:本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2、D【解题分析】
根据分式的基本性质即可求出答案.【题目详解】解:原式=,∴分式的值缩小为原来的一半;故选择:D.【题目点拨】本题考查分式的基本性质,解题的关键是熟练运用分式的运算法则,本题属于基础题型.3、C【解题分析】试题解析:根据题意得:解得:故选C.4、D【解题分析】
根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.【题目详解】∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A.B选项正确;在△AEB和△CED中,∠BAE=∠DCE∠AEB=∠CEDAB=CD∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.【题目点拨】此题考查翻折变换(折叠问题),解题关键在于利用全等三角形的性质进行解答.5、B【解题分析】
根据两点间的距离公式即可得到结论.【题目详解】∵点A、B的坐标分别为(2,5),(-4,-3),∴AB==10,故选B.【题目点拨】本题考查了坐标与图形性质,两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.6、A【解题分析】
首先解不等式组,然后即可判定的值.【题目详解】,解得,解得由数轴,得故选:A.【题目点拨】此题主要考查根据不等式组的解集求参数的值,熟练掌握,即可解题.7、C【解题分析】
根据小华,小红,小刚和小强四位同学的单词记忆效率y与复习的单词个数x的情况的图表,回答问题即可.【题目详解】解:由图可得:小华同学的单词的记忆效率最高,但复习个数最少,小强同学的复习个数最多,但记忆效率最低,小红和小刚两位同学的记忆效率基本相同,但是小刚同学复习个数较多,所以这四位同学在这次单词复习中正确默写出的单词个数最多的是小刚.故选:C.【题目点拨】本题考查函数的图象,正确理解题目的意思是解题的关键.8、B【解题分析】
首先移项,把-1移到不等式的右边,注意要变号,然后合并同类项,再把x的系数化为1,即可求出不等式的解集.【题目详解】解:2x-1≤3,
移项得:2x≤3+1,
合并同类项得:2x≤4,
把x的系数化为1得:x≤2,
故选:B.【题目点拨】此题主要考查了一元一次不等式的解法,解不等式时要注意:①移项时要注意符号的改变;②把未知数的系数化为1时,两边同时除以或乘以同一个负数时要改变不等号的方向.9、C【解题分析】
根据等腰直角三角形的性质可得出S2+S2=S1,写出部分Sn的值,根据数的变化找出变化规律“Sn=()n−2”,依此规律即可得出结论.【题目详解】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n−2.当n=2016时,S2016=()2016−2=()2012.故选:C.【题目点拨】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“Sn=()n−2”.本题属于中档题,难度不大,解决该题型题目时,写出部分Sn的值,根据数值的变化找出变化规律是关键.10、C【解题分析】由纵坐标看出,返回时离家的距离是30千米,由横坐标看出,返回时所用的时间是15−13=2小时,由路程与时间的关系,得返回时的速度是30÷2=15千米,由时间、速度的关系得15×1=15千米,故选:C.二、填空题(每小题3分,共24分)11、y=-x+1.【解题分析】
根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【题目详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【题目点拨】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.12、x≥﹣1.【解题分析】
根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【题目详解】解:由题意得,1+x≥0,
解得x≥-1.
故答案为x≥-1.【题目点拨】本题考查二次根式的意义和性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13、k≥1【解题分析】
两方程相减可得x﹣y=4k﹣3,根据x﹣y≥5得出关于k的不等式,解不等式即可解答.【题目详解】两方程相减可得x﹣y=4k﹣3,∵x﹣y≥5,∴4k﹣3≥5,解得:k≥1,故答案为:k≥1.【题目点拨】本题考查一元一次不等式的应用,根据题意列出关于k的不等式是解题的关键.14、150°【解题分析】
首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.【题目详解】解:连接PQ,由题意可知△ABP≌△CBQ
则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,
∵△ABC是等边三角形,
∴∠ABC=∠ABP+∠PBC=60°,
∴∠PBQ=∠CBQ+∠PBC=60°,
∴△BPQ为等边三角形,
∴PQ=PB=BQ=4,
又∵PQ=4,PC=5,QC=3,
∴PQ2+QC2=PC2,
∴∠PQC=90°,
∵△BPQ为等边三角形,
∴∠BQP=60°,
∴∠BQC=∠BQP+∠PQC=150°
∴∠APB=∠BQC=150°【题目点拨】本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.15、【解题分析】解不等式组可得,因不等式组无解,所以a≥1.16、54【解题分析】
由矩形的面积公式可得20m2,30m2的两个矩形的长度比为2:3,即可求第四块土地的面积.【题目详解】解:∵20m2,30m2的两个矩形是等宽的,∴20m2,30m2的两个矩形的长度比为2:3,∴第四块土地的面积==54m2,故答案为:54【题目点拨】本题考查了矩形的性质,熟练运用矩形的面积公式是本题的关键.17、x≥1【解题分析】
由图象得出解集即可.【题目详解】由图象可得再x轴下方,即x≥1的时候,故答案为:x≥1.【题目点拨】本题考查一次函数图象的性质,关键在于牢记基础知识.18、3【解题分析】
根据角平分线上的点到角的两边的距离相等求解即可.【题目详解】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PE=PD=3cm.故答案为;3【题目点拨】本题主要考查了角平分线的定义,角平分线上的点到角的两边的距离相等,熟记性质是解题的关键.三、解答题(共66分)19、750米.【解题分析】设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,根据题意可得,实际比原计划少用2天完成任务,据此列方程求解.解:设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,由题意得,﹣=2,解得:x=750,经检验,x=750是原分式方程的解,且符合题意.答:实际每天修建盲道750米.“点睛”本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.20、14cm1【解题分析】
连接AC,利用勾股定理求出AC的长,在△ABC中,判断它的形状,并求出它的面积,最后求出四边形ABCD的面积.【题目详解】解:连接AC,
∵AD=4cm,CD=3cm,∠ADC=90°,
∴AC===5(cm)
∴S△ACD=CD•AD=6(cm1).
在△ABC中,∵51+111=131即AC1+BC1=AB1,
∴△ABC为直角三角形,即∠ACB=90°,
∴S△ABC=AC•BC=30(cm1).
∴S四边形ABCD=S△ABC-S△ACD
=30-6=14(cm1).
答:四边形ABCD的面积为14cm1.【题目点拨】本题考查了勾股定理、勾股定理的逆定理及三角形的面积公式.掌握勾股定理及其逆定理,连接AC,说明△ABC是直角三角形是解决本题的关键.21、(1)这15辆车中大货车用8辆,小货车用7辆;(2)①y=100x+9400(3≤x≤8,且x为整数);②使总运费最少的调配方案是:7辆大货车、3辆小货车前往A村;1辆大货车、4辆小货车前往B村.最少运费为10100元.【解题分析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【题目详解】解:(1)设大货车用x辆,小货车用y辆,根据题意得:,解得:.故这15辆车中大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥108,解得:x≥7,又∵3≤x≤8,∴7≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=7时,y最小,最小值为y=100×7+9400=10100(元).答:使总运费最少的调配方案是:7辆大货车、3辆小货车前往A村;1辆大货车、4辆小货车前往B村.最少运费为10100元.【题目点拨】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.22、(1)证明见解析;(2)△PQR为等腰三角形,理由见解析.【解题分析】
(1)正方形对角线AC是对角的角平分线,可以证明△ADP≌△DCG,即可求证DP=CG.(2)由(1)的结论可以证明△CEQ≌△CEG,进而证明∠PQR=∠QPR.故△PQR为等腰三角形.【题目详解】(1)证明:在正方形ABCD中,AD=CD,∠ADP=∠DCG=90°,∠CDG+∠ADH=90°,∵DH⊥AP,∴∠DAH+∠ADH=90°,∴∠CDG=∠DAH,∴△ADP≌△DCG,∵DP,CG为全等三角形的对应边,∴DP=CG.(2)△PQR为等腰三角形.∵∠QPR=∠DPA,∠PQR=∠CQE,CQ=DP,由(1)的结论可知∴CQ=CG,∵∠QCE=∠GCE,CE=CE,∴△CEQ≌△CEG,即∠CQE=∠CGE,∴∠PQR=∠CGE,∵∠QPR=∠DPA,∴∠PQR=∠QPR,所以△PQR为等腰三角形.23、(1)点坐标为;(2);(3)点E的坐标为、、、,、、.【解题分析】
先确定直线的解析式,进而求出点的坐标,再分两种情况:Ⅰ、当点在点右侧时,Ⅱ、当点在点左侧时,同Ⅰ的方法即可得出结论.(1)把点坐标代入可得到,则,然后根据两直线相交的问题,通过解方程组得到点坐标;(2)先确定点坐标为然后利用四边形的面积进行计算即可;(3)设出点的坐标,进而表示出,再利用等腰三角形的两腰相等建立方程,即可得出结论;【题目详解】解:把代入得,解得,,设,,,,或,点坐标为或,Ⅰ、当时,把代入得,解得,,解方程组得,点坐标为;当时,,点坐标为,四边形AOCD的面积;设,,,,,,是等腰三角形,当时,,或,或当时,,或舍,当时,,,,Ⅱ、当点时,把代入得,解得,,解方程组,得,点坐标为;当时,,点坐标为,四边形AOCD的面积;设,,,,当时,,或,或当时,,或舍,当时,,,,综上所述,点E的坐标为、、、,、、.【题目点拨】此题是一次函数综合题,主要考查了待定系数法,坐标轴上点的坐标特征,两直线的交点坐标的确定,等腰三角形的性质,分类讨论的思想解决问题是解本题的关键.24、(1)证明见解析;(2).【解题分析】
(1)根据平行四边形的对边平行可以得到AB//CD,又AE//BD,可以证明四边形ABDE是平行四边形,所以AB=DE,故D是EC的中点;
(2)先求出是等边三角形,再求EF.【题目详解】(1)在平行四边形中,,且,又∵,∴四边形是平行四边形,∴,,即是的中点;(2)∵,∴是直角三角形又∵是的中点,∴,∵,∴,∴是等边三角形,∴,∴在中.【题目点拨】本题主要考查了平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半以及等边三角形的判定,熟练掌握性质定理并灵活运用是解题的关键.25、(1)y=x+40;(2)3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)能【解题分析】试题分析:(1)根据总价=单价×数量,即可得到结果;(2)根据幸福村共有264户村民,沼气池修建用地708平方米,即可列不等式组求解;(3)先根据一次函数的性质求得最少费用,与村民每户集资700元与政府补助共计的费用比较即可判断.(1)y=3x+2(20-x)=x+40;(2)由题意得20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六安市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及一套完整答案详解
- 2026年商丘市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解参考
- 丽江市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(考试直接用)
- 2026年北海市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(基础题)
- 温州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(历年真题)
- 2026年定西市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(培优b卷)
- 2025年高血压脑病降颅压试题及答案
- 2025年高校教师职业道德题库附答案(基础题)
- 2025年高危妊娠试题及答案
- 2025年高危儿管理培训试卷附答案
- DB32/T 4401-2022《综合医院建筑设计标准》-(高清正版)
- 文博考研-文物学概论复习笔记
- 赠从弟(其二)课件
- 重症医学科优质护理服务工作计划
- 典范英语7-4中英文对照翻译Oh,otto!Oh,otto
- 火车站站场改造工程施工方案
- 了凡四训-(课堂PPT)课件(PPT 33页)
- 领导干部压力管理与心理调适PPT通用课件
- 古诗韵律操歌词
- 工作分析(第二版)付亚和
- 浅析拉维莱特公园
评论
0/150
提交评论