2024届江苏省苏州市区八年级数学第二学期期末经典模拟试题含解析_第1页
2024届江苏省苏州市区八年级数学第二学期期末经典模拟试题含解析_第2页
2024届江苏省苏州市区八年级数学第二学期期末经典模拟试题含解析_第3页
2024届江苏省苏州市区八年级数学第二学期期末经典模拟试题含解析_第4页
2024届江苏省苏州市区八年级数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省苏州市区八年级数学第二学期期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列式子变形是因式分解的是()A.x2-2x-3=x(x-2)-3B.x2-2x-3=(x-1)2-4C.(x+1)(x-3)=x2-2x-3D.x2-2x-3=(x+1)(x-3)2.计算:=()A. B.4 C.2 D.33.如图,点,,在同一条直线上,正方形,正方形的边长分别为3,4,为线段的中点,则的长为()A. B. C.或 D.4.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm5.顺次连接四边形各边的中点,所成的四边形必定是()A.等腰梯形 B.直角梯形 C.矩形 D.平行四边形6.设表示两个数中的最大值,例如:,,则关于的函数可表示为()A. B. C. D.7.一个正n边形的每一个外角都是45°,则n=()A.7 B.8 C.9 D.108.已知在RtΔABC中,∠C=90°,AC=2,BC=3,则AB的长为()A.4 B. C. D.59.下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形10.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.12.若a、b,c为三角形的三边,则________。13.已知直线y=ax+ba≠0过点A-3,0和点B0,2,那么关于x的方程ax+b=014.如图,在平行四边形ABCD中,AB=10,BC=6,AC⊥BC,则平行四边形ABCD的面积为___________.15.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为________________.16.一个n边形的内角和为1080°,则n=________.17.若分式的值为零,则x=___________。18.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是_____.三、解答题(共66分)19.(10分)如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.20.(6分)如图,函数的图像与函数的图像交于两点,与轴交于点,已知点的坐标为点的坐标为.(1)求函数的表达式和点的坐标;(2)观察图像,当时,比较与的大小;(3)连结,求的面积.21.(6分)某校为了解八年级学生课外阅读情况,随机抽取20名学生平均每周用于课外阅读读的时间(单位:),过程如下:(收集数据)30608150401101301469010060811201407081102010081(整理数据)课外阅读时间等级人数38(分析数据)平均数中位数众数80请根据以上提供的信息,解答下列问题:(1)填空:______,______,______,______;(2)如果每周用于课外读的时间不少于为达标,该校八年级现有学生200人,估计八年级达标的学生有多少人?22.(8分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.23.(8分)某中学数学活动小组为了调查居民的用水情况,从某社区的户家庭中随机抽取了户家庭的月用水量,结果如下表所示:月用水量(吨)户数求这户家庭月用水量的平均数、众数和中位数;根据上述数据,试估计该社区的月用水量;由于我国水资源缺乏,许多城市常利用分段计费的方法引导人们节约用水,即规定每个家庭的月基本用水量为(吨),家庭月用水量不超过(吨)的部分按原价收费,超过(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合适?简述理由.24.(8分)如图,两个全等的Rt△AOB、Rt△OCD分别位于第二、第一象限,∠ABO=∠ODC=90°,OB、OD在x轴上,且∠AOB=30°,AB=1.(1)如图1中Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转度,再绕斜边中点旋转度得到的,C点的坐标是;(2)是否存在点E,使得以C、O、D、E为顶点的四边形是平行四边形,若存在,写出E点的坐标;若不存在请说明理由.(3)如图2将△AOC沿AC翻折,O点的对应点落在P点处,求P点的坐标.25.(10分)如图,在中,D是BC的中点,E是AD的中点,过点A作,AF与CE的延长线相交于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)①若四边形AFBD是矩形,则必须满足条件_________;②若四边形AFBD是菱形,则必须满足条件_________.26.(10分)如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

因式分解就是把整式分解成几个整式积的形式,根据定义即可进行判断.【题目详解】A、没把一个多项式转化成几个整式积的形式,故A错误;B、没把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C次错误;D、把一个多项式转化成几个整式积的形式,故D正确,故选D.【题目点拨】本题考查了因式分解的定义,因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算,熟练掌握因式分解的定义是解题的关键.2、D【解题分析】

先利用二次根式的性质化简,再合并同类二次根式得出答案.【题目详解】解:=+2=3.故选:D.【题目点拨】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.3、D【解题分析】

连接BD、BF,由正方形的性质可得:∠CBD=∠FBG=45°,∠DBF=90°,再应用勾股定理求BD、BF和DF,最后应用“直角三角形斜边上中线等于斜边一半”可求得BH.【题目详解】如图,连接BD、BF,∵四边形ABCD和四边形BEFG都是正方形,∴AB=AD=3,BE=EF=4,∠A=∠E=90°,∠ABD=∠CBD=∠EBF=∠FBG=45°,∴∠DBF=90°,BD=3,BF=4,∴在Rt△BDF中,DF==,∵H为线段DF的中点,∴BH=DF=.故选:D.【题目点拨】本题考查了正方形的性质、等腰直角三角形边的关系、勾股定理、直角三角形性质等,解题关键添加辅助线构造直角三角形.4、B【解题分析】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=1.故选B.5、D【解题分析】

根据题意,画出图形,连接AC、BD,根据一组对边平行且相等的四边形是平行四边形进行判定.【题目详解】解:四边形ABCD的各边中点依次为E、F、H、G,∴EF为△ABD的中位线,GH为△BCD的中位线,∴EF∥BD,且EF=BD,GH∥BD,且GH=BD,∴EF∥GH,EF=GH,∴四边形EFHG是平行四边形.故选:D.【题目点拨】此题考查平行四边形的判定和三角形中位线定理.解题的关键是正确画出图形,注意利用图形求解.6、D【解题分析】

由于3x与的大小不能确定,故应分两种情况进行讨论.【题目详解】当,即时,;

当,即时,.

故选D.

【题目点拨】本题考查的是一次函数的性质,解答此题时要注意进行分类讨论.7、B【解题分析】

根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.【题目详解】解:n=360°÷45°=1.故选:B.【题目点拨】本题考查了多边形的外角,熟记正多边形的边数、每一个外角的度数、以及外角和360°三者之间的关系是解题的关键.8、C【解题分析】

由题意可知AB为直角边,由勾股定理可以求的.【题目详解】AB=,所以答案选择C项.【题目点拨】本题考查了直角三角形中勾股定理的运用,熟悉掌握概念是解决本题的关键.9、D【解题分析】试题分析:A.对角线互相垂直的四边形不一定是菱形,故本选项错误;B.一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C.对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D.对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D.考点:命题与定理.10、C【解题分析】

根据轴对称图形与中心对称图形的概念,结合选项所给图形即可判断.【题目详解】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;

B、不是中心对称图形,是轴对称图形,故本选项错误;

C、既是中心对称图形,也是轴对称图形,故本选项正确;

D、是中心对称图形,不是轴对称图形,故本选项错误.

故选:C.【题目点拨】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、1【解题分析】

利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.【题目详解】解:x2-5x+4=0,

(x-1)(x-4)=0,

所以x1=1,x2=4,

当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;

当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.

故答案是:1.【题目点拨】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.12、2a【解题分析】

根据三角形三条边的长度关系,可以得到两个括号内的正负情况;再根据一个数先平方,后开方,所得的结果是这个数的绝对值,来计算这个式子.【题目详解】∵a,b,c是三角形的三边,三角形任意两边之和大于第三边,任意两条边之差小于第三边,∴a+b-c>0,b-c-a<0,所以==.【题目点拨】本题主要考查了三角形三边的边长关系:三角形任意两条边之和大于第三边,任意两条边之差小于第三边.解决本题,还需要清楚地明白一个数先平方后开方,所得的就是这个数的绝对值.13、x=-3【解题分析】

观察即可知关于x的方程ax+b=0的解是函数y=ax+ba≠0中y=0时x的值【题目详解】解:∵直线y=ax+ba≠0过点∴当y=0时x=-3即ax+b=0的解为x=-3故答案为:x=-3【题目点拨】本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.14、48【解题分析】

在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,再根据平行四边形的面积公式即可求解.【题目详解】∵AC⊥BC,∴∠ACB=90°,在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,∴平行四边形ABCD的面积为:BC×AC=6×8=48.故答案为:48.【题目点拨】本题考查了勾股定理及平行四边形的性质,利用勾股定理求得AC=8是解决问题的关键.15、1,1.【解题分析】

本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【题目详解】数据1出现了3次最多,这组数据的众数是1,共10个数据,从小到大排列此数据处在第5、6位的数都为1,故中位数是1.故答案为:1,1.【题目点拨】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.16、1【解题分析】

直接根据内角和公式计算即可求解.【题目详解】(n﹣2)•110°=1010°,解得n=1.故答案为1.【题目点拨】主要考查了多边形的内角和公式.多边形内角和公式:.17、1【解题分析】

根据分式的值为零的条件可以求出x的值.【题目详解】解:∵分式的值为零∴∴且∴且∴x=1故答案为:x=1【题目点拨】若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.18、.【解题分析】

解:如图3所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=3,∴AA′=6,AE′=3.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=3;CQ=DC﹣CQ=3﹣3=3,∵BP∥AA′,∴△BE′P∽△AE′A′,∴,即,BP=,CP=BC﹣BP==,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×3﹣×3×﹣×3×=,故答案为.【题目点拨】本题考查3.轴对称-最短路线问题;3.正方形的性质.三、解答题(共66分)19、(1)4;(2)【解题分析】

(1)首先根据菱形的性质得到AC和BD垂直平分,结合题意可得a2+b2=5,进而得到ab=2,结合图形的面积公式即可求出面积;(2)根据a2+b2=5,ab=2得到a+b的值,进而求出答案.【题目详解】解:(1)∵四边形ABCD是菱形,∴BD垂直平分AC,∵OA=a,OB=b,AB=,∴a2+b2=5,∵a,b满足:.∴a2b2=4,∴ab=2,∴△AOB的面积=ab=1,∴菱形ABCD的面积=4△AOB的面积=4;(2)∵a2+b2=5,ab=2,∴(a+b)2=a2+b2+2ab=7,∴a+b=,∴=.【题目点拨】本题主要考查了菱形的性质,解题的关键是根据菱形的对角线垂直平分得到a和b的数量关系,此题是一道非常不错的试题.20、(1),点的坐标为;(2)详见解析;(3)1.5【解题分析】

(1)把A(2,1),C(0,3)代入y1=k1x+b可求出k1和b;把A(2,1)代入(x>0)求出k2,然后把两个解析式联立起来解方程组即可求出B点坐标;(2)观察函数图象,当x>0,两图象被A,B分成三段,然后分段判断大小以及对应的x的值;(3)利用梯形-进行计算.【题目详解】解:(1)∵点在函数的图像上,,解得:,∴函数的表达式为.∵点在函数的图像上,,∴函数的表达式为.由,得:或,∴点的坐标为.(2)如图,分别过作轴的垂线,垂足分别为,则点的坐标分别为.由图像可知:当时,;当时,;当时,.(3)梯形-.【题目点拨】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了观察函数图象的能力.21、(1)a=5,b=4,m=81,n=8;(2)120人.【解题分析】

根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)结果.【题目详解】(1)由统计表收集数据可知,,,;(2)(人).答:估计达标的学生有120人.【题目点拨】此题考查中位数、众数的定义,用样本估计总体,解题关键在于看懂图中数据22、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.【解题分析】试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.23、7;(吨);众数或中位数较合理,【解题分析】

(1)根据加权平均数计算平均数;众数即出现次数最多的数据,中位数应是第15个和第15个数据的平均数;(2)根据样本平均数估计总体平均数,从而计算该社区的月用水量;(3)因为这组数据中,极差较大,用平均数不太合理,所以选用众数或中位数,有代表性.【题目详解】这户家庭月用水量的平均数(吨)出现了次,出现的次数最多,则众数是,∵共有个数,∴中位数是第、个数的平均数,∴中位数是(吨),∵社区共户家庭,∴该社区的月用水量(吨);众数或中位数较合理.因为满足大多数家庭用水量,另外抽样的户家庭用水量存在较大数据影响了平均数.【题目点拨】本题主要考查了众数、中位数、平均数的定义,解本题的要点在于掌握平均数的计算方法,理解众数和中位数的概念,能够正确找到众数和中位数,学会运用平均数、众数和中位数解决实际问题.24、(1)90,180,(1,);(2)存在,E的坐标为(0,)或(2,),或(0,﹣);(3)P(1﹣,1+).【解题分析】

(1)先求出OB,再由旋转求出OD,CD,即可得出结论;(2)先求出D的坐标,再分三种情况,利用平行四边形的性质即可得出结论;(3)先判断出四边形OAPC是正方形,再利用中点坐标公式即可得出结论【题目详解】解:(1)Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转90°,再绕斜边中点旋转180°得到的,在Rt△AOB中,∠AOB=30°,AB=1,∴OB=,由旋转知,OD=AB=1,CD=OB=,∴C(1,),故答案为90,180,(1,);(2)存在,理由:如图1,由(1)知,C(1,),∴D(1,0),∵O(0,0),∵以C、O、D、E为顶点的四边形是平行四边形,∴①当OC为对角线时,∴CE∥OD,CE=OD=1,点E和点B'重合,∴E(0,),②当CD为对角线时,CE∥OD,CE=OD=1,∴E(2,),当OD为对角线时,OE'∥CD,OE'=CD,∴E(0,﹣),即:满足条件的E的坐标为(0,)或(2,),或(0,﹣);(3)由旋转知,OA=OC,∠OCD=∠AOB=30°,∴∠COD=90°﹣∠OCD=60°,∴∠AOC=90°,由折叠知,AP=OA,PC=OC,∴四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论