




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省镇江市扬中学市2024届数学八下期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.“古诗•送郎从军:送郎一路雨飞池,十里江亭折柳枝;离人远影疾行去,归来梦醒度相思.”中,如果用纵轴y表示从军者与送别者行进中离原地的距离,用横轴x表示送别进行的时间,从军者的图象为O→A→B→C,送别者的图象为O→A→B→D,那么下面的图象与上述诗的含义大致吻合的是()A. B. C. D.2.下列四边形中是轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个3.已知,则下列不等式成立的是()A. B. C. D.4.已知点P(m﹣3,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.5.根据以下程序,当输入x=﹣2时,输出结果为()A.﹣5 B.﹣2 C.0 D.36.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm7.甲车行驶40km与乙车行使30km所用的时间相同,已知甲车比乙车每小时多行驶15km.设甲车的速度为xkm/h,依题意,下列所列方程正确的是()A.= B.= C.= D.=8.若二次根式2-x有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥29.已知P1(1,y1),P2(-1,y2)是一次函数y=﹣2x+1的图象上的两个点,则y1,y2的大小关系是()A.= B.< C.> D.不能确定10.方程x2-2x-5=0的左边配成一个完全平方后,所得的方程是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在正方形ABCD中,AB=8,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_____.12.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=_____度.13.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为____元.14.已知边长为4cm的正方形ABCD中,点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,则当PQcm时,点C到PQ的距离为______.15.某公司招聘英语翻译,听、说、写成绩按3∶3∶2计入总成绩.某应聘者的听、说、写成绩分别为80分,90分,95分(单项成绩和总成绩满分均为百分制),则他的总成绩为____________分.16.计算所得的结果是______________。17.将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.18.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长是______.三、解答题(共66分)19.(10分)计算:÷+×﹣.20.(6分)如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F.求证:△AOE≌△COF.21.(6分)如图,已知和线段a,求作菱形ABCD,使,.(只保留作图痕迹,不要求写出作法)22.(8分)如图,在中,,请用尺规过点作直线,使其将分割成两个等腰三角形.(保留作图痕迹,不写作法.并把作图痕迹用黑色签字笔加黑).23.(8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?24.(8分)已知一次函数y=kx+b的图象经过点(﹣1,﹣5)和(2,1),求一次函数的解析式.25.(10分)解不等式组:,并把它的解集在数轴上表示出来.26.(10分)已知方程组,当m为何值时,x>y?
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
由题意得送郎一路雨飞池,说明十从军者和送别者的函数图象在一开始的时候一样,再根据十里江亭折柳枝,说明从军者与送者离原地的距离不变,最后根据离人远影疾行去,说明从军者离原地的距离越来越远,送别者离原地的距离越来越近即可得出答案.【题目详解】∵送郎一路雨飞池,
∴十从军者和送别者的函数图象在一开始的时候一样,
∵十里江亭折柳枝,
∴从军者与送者离原地的距离不变,
∵离人远影疾行去,
∴从军者离原地的距离越来越远,送别者离原地的距离越来越近.
故选:C.【题目点拨】考查了函数的图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.2、B【解题分析】
根据轴对称图形的概念逐一进行判断即可.【题目详解】平行四边形不是轴对称图形,故不符合题意;矩形是轴对称图形,故符合题意;菱形是轴对称图形,故符合题意;正方形是轴对称图形,故符合题意,所以是轴对称图形的个数是3个,故选B.【题目点拨】本题考查了轴对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.3、C【解题分析】
根据不等式的性质逐个判断即可.【题目详解】解:A、∵x>y,∴2x>2y,故本选项不符合题意;B、∵x>y,∴x−6>y−6,故本选项不符合题意;C、∵x>y,∴x+5>y+5,故本选项符合题意;D、∵x>y,∴−3x<−3y,故本选项不符合题意;故选:C.【题目点拨】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.4、D【解题分析】
先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【题目详解】解:∵点P(m﹣3,m﹣1)在第二象限,∴,解得:1<m<3,故选:D.【题目点拨】本题考查不等式组的解法,在数轴上表示不等式组的解集等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.5、B【解题分析】
根据所给的程序,用所给数的平方减去3,再把所得的结果和1比较大小,判断出需不需要继续计算即可.【题目详解】解:当x=﹣1时,(﹣1)1﹣3=1;当x=1时,11﹣3=﹣1;∵﹣1<1,∴当输入x=﹣1时,输出结果为﹣1.故选:B.【题目点拨】本题考查了程序式的基本算法及代数式的的计算,读懂题中的算法是解题的关键.6、C【解题分析】
根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm).∵AD=BD,∴BD+CD=12cm.故选C.7、A【解题分析】
设甲车的速度为xkm/h,则乙车的速度为(x-15)km/h,根据时间=路程÷速度结合甲车行驶40km与乙车行使30km所用的时间相同,即可得出关于x的分式方程,此题得解.【题目详解】设甲车的速度为xkm/h,则乙车的速度为(x﹣15)km/h,根据题意得:=.故选A.【题目点拨】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.8、C【解题分析】
二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【题目详解】由题意得:1-x≥0,解得:x≤1.故选C.【题目点拨】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.9、B【解题分析】
先根据一次函数y=﹣2x+1中k=﹣2判断出函数的增减性,再根据1>﹣1进行解答即可.【题目详解】解:∵一次函数y=﹣2x+1中k=﹣2<0,∴此函数是y随x增大而减小,∵1>﹣1,∴y1<y2,故选:B.【题目点拨】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.10、B【解题分析】
把常数项-5移项后,应该在左右两边同时加上一次项系数-2的一半的平方.【题目详解】解:把方程x2-2x-5=0的常数项移到等号的右边,得到x2-2x=5,
方程两边同时加上一次项系数一半的平方,得到x2-2x+(-1)2=5+(-1)2,
配方得(x-1)2=1.
故选:B.【题目点拨】本题考查配方法解一元二次方程.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.二、填空题(每小题3分,共24分)11、4【解题分析】
连接DE,交AC于点P,连接BD,由正方形的性质及对称的性质可得DE即为所求,然后运用勾股定理在RT△CDE中求解即可.【题目详解】解:连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=8,E是BC的中点,∴CE=4,在Rt△CDE中,DE=.故答案为.【题目点拨】正方形的性质、对称的性质及勾股定理是本题的考点,根据题意作出辅助线并确定DE即为所求是解题的关键.12、1【解题分析】
根据折叠的性质知:可知:BN=BP,从而可知∠BPN的值,再根据∠PBQ=∠CBQ,可将∠PBQ的角度求出.【题目详解】根据折叠的性质知:BP=BC,∠PBQ=∠CBQ
∴BN=BC=BP
∵∠BNP=90°
∴∠BPN=1°
∴∠PBQ=×60°=1°.
故答案是:1.【题目点拨】已知折叠问题就是已知图形的全等,根据边之间的关系,可将∠PBQ的度数求出.13、1【解题分析】
根据题意算出5种方案的钱数,故可求解.【题目详解】解:连续6天不限次数乘坐地铁有5种方案方案①:买一日票6张,费用20×6=120(元)方案②:买二日票3张:30×3=90(元)方案③:买三日票2张:40×2=1(元)方案④:买一日票1张,五日票1张:20+70=120(元)方案⑤:买七日票1张:90元故方案③费用最低:40×2=1(元)故答案为1.【题目点拨】此题主要考查有理数运算的应用,解题的关键是根据题意写出各方案的费用.14、或.【解题分析】
如图1,当P在AB上,Q在AD上时,根据题意得到,连接AC,根据正方形的性质得到,,求得,推出是等腰直角三角形,得到,根据等腰直角三角形的性质即可得到结论,如图2,当P在BC上,Q在DC上时,则,同理,.【题目详解】∵点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,∴如图1,当P在AB上,Q在AD上时,则AQ=AP,连接AC,∵四边形ABCD是正方形,∴∠DAB=90°,AC⊥BD,∴ACAB=4.∵AQ=AP,∴△APQ是等腰直角三角形,∴∠AQP=∠QAM=45°,∴AM⊥AC,∵PQcm,∴AMPQ,∴CM=AC=AM;如图2,当P在BC上,Q在DC上时,则CQ=CP,同理,CM,综上所述:点C到PQ的距离为或,故答案为:或.【题目点拨】本题考查了正方形的性质,等腰直角三角形的性质,正确的作出图形是解题的关键.15、87.1【解题分析】分析:运用加权平均数的公式直接计算.用80分,90分,91分,分别乘以3,3,2,再用它们的和除以8即可.详解:由题意知,总成绩=(80×3+90×3+91×2)÷(3+3+2)=87.1(分).故答案为:87.1.点睛:本题考查的是加权平均数的求法.本题易出现的错误是直接求出80,90,91的平均数.16、1【解题分析】
由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【题目详解】原式1.故答案为:1.【题目点拨】本题考查了二次根式的乘除法运算;由于后两项互为倒数,有些同学往往先将它们约分,从而得出结果为5的错误结论,需注意的是同级运算要从左到右依次计算.17、2cm≤h≤3cm【解题分析】
解:根据直角三角形的勾股定理可知筷子最长在水里面的长度为13cm,最短为12cm,则筷子露在外面部分的取值范围为:.故答案为:2cm≤h≤3cm【题目点拨】本题主要考查的就是直角三角形的勾股定理的实际应用问题.在解决“竹竿过门”、立体图形中最大值的问题时,我们一般都会采用勾股定理来进行说明,从而得出答案.我们在解决在几何体中求最短距离的时候,我们一般也是将立体图形转化为平面图形,然后利用勾股定理来进行求解.18、【解题分析】
在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,则斜边AB=2CD=1,则根据勾股定理即可求出BC的长.【题目详解】解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=1.∴BC===.故答案为:.【题目点拨】本题主要考查直角三角形中斜边上的中线的性质及勾股定理,掌握直角三角形中斜边上的中线是斜边的一半是解题的关键.三、解答题(共66分)19、.【解题分析】
先进行二次根式化简和乘除运算,然后再进行加减即可.【题目详解】解:原式=4﹣.【题目点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20、见详解.【解题分析】
根据平行四边形的性质可知:OA=OC,∠AEO=∠OFC,∠EAO=∠OCF,所以△AOE≌△COF【题目详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC∴∠EAO=∠FCO又∵∠AOE和∠COF是对顶角,∴∠AOE=∠COF∵O是AC的中点,∴OA=OC在△AOE和△COF中,∴△AOE≌△COF21、详见解析【解题分析】
作∠DAB=∠,在射线AB,射线AD分别截取AB=AD=a,再分别以B,D为圆心a为半径画弧,两弧交于点C,连接CD,BC,四边形ABCD即为所求.【题目详解】如图所示.【题目点拨】本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.22、见解析【解题分析】
作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=DB.【题目详解】解如图所示:,△ACD和△CDB即为所求.【题目点拨】此题主要考查了应用设计与作图,关键在于用中垂线求得中点和运用直角三角形中,斜边上的中线等于斜边的一半,把Rt△ABC分割成两个等腰三角形.23、(1)乙队单独完成需2天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.【解题分析】
(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.【题目详解】解:(1)设乙队单独完成需x天.根据题意,得:.解这个方程得:x=2.经检验,x=2是原方程的解.∴乙队单独完成需2天.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程经济职能部门协作试题及答案
- 地理信息系统GIS技术应用题
- 农村土地整治与综合开发合作合同
- 公司员工职务晋升证明(8篇)
- 市政工程施工技术解析及试题及答案
- 工程变更申报流程试题及答案
- 2025年工程经济理念探索试题及答案
- 2025年工程经济考试的整体复习试题及答案
- 年度业务发展路径探讨计划
- 学校品牌建设与推广方案计划
- 砂石入股合同协议书
- 项目制员工合同协议
- 2025年下半年四川省成都市武侯区事业单位招聘80人易考易错模拟试题(共500题)试卷后附参考答案
- (二模)贵阳市2025年高三年级适应性考试(二)物理试卷(含答案)
- 合资公司成立可行性研究报告范文
- 《康复技术》课件-踝关节扭伤康复
- 2025年中国亮白防蛀固齿牙膏市场调查研究报告
- 上甘岭战役课件
- 黑龙江省齐齐哈尔市普高联谊校2022-2023学年高一下学期语文期末试卷(含答案)
- 名家班主任培训:AI赋能与德育创新
- 首汽约车合同协议
评论
0/150
提交评论