版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省兴仁市真武山街道办事处黔龙学校2024届数学八下期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=5,则图中阴影部分的面积为()A.6 B. C. D.252.下列命题中,是假命题的是()A.四个角都相等的四边形是矩形B.正方形的对角线所在的直线是它的对称轴C.对角线互相平分且平分每一组对角的四边形是菱形D.一组对边相等,另一组对边平行的四边形是平行四边形3.下列命题中是真命题的有()个.①当x=2时,分式的值为零②每一个命题都有逆命题③如果a>b,那么ac>bc④顺次连接任意四边形各边中点得到的四边形是平行四边形⑤一组对边平行,另一组对边相等的四边形是平行四边形.A.0 B.1 C.2 D.34.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的面积分别为m,n,H为线段DF的中点,则BH的长为()A. B. C. D.5.如图,把一个边长为1的正方形放在数轴E,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数为().A.2 B.1.4 C.3 D.1.76.若分式有意义,则的取值范围是()A. B. C. D.7.(2017广西贵港第11题)如图,在中,,将绕顶点逆时针旋转得到是的中点,是的中点,连接,若,则线段的最大值是()A. B. C. D.8.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美 B.中华游 C.爱我中华 D.美我中华9.如图是小王早晨出门散步时,离家的距离s与时间t之间的函数图象.若用黑点表示小王家的位置,则小王散步行走的路线可能是()A. B. C. D.10.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B. C. D.11.为了解某公司员工的年工资情况,小明随机调查了10位员工,其年工资如下单位:万元:4,4,4,5,6,6,7,7,9,则下列统计量中,能合理反映该公司员工年工资中等水平的是A.平均数 B.中位数 C.众数 D.方差12.下列二次根式中,化简后不能与进行合并的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知平行四边形ABCD中,∠B+∠D=270°,则∠C=________.14.“a的3倍与b的差不超过5”用不等式表示为__________.15.小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为_____,方差为________.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为_____,面积为_____.17.在直角三角形ABC中,∠B=90°,BD是AC边上的中线,∠A=30°,AB=5,则△ADB的周长为___________18.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据_____.三、解答题(共78分)19.(8分)在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.此时,有结论AE=MN,请进行证明;(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明.(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB、CD于点M、N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.图1图2图320.(8分)2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?21.(8分)(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.22.(10分)已知m和n是两个两位数,把m和n中任意一个两位数的十位数字放置于另一个两位数的十位数字与个位数字之间,再把其个位数字放置于另一个两位数的个位数字的右边,就可以得到两个新四位数,把这两个新四位数的和除以11的商记为W(m,n).例如:当m=36,n=10时,将m十位上的3放置于n的1、0之间,将m个位上的6放置于n中0的右边,得到1306;将n十位上的1放置于m的3、6之间,将n个位上的0放置于m中6的右边,得到1.这两个新四位数的和为1306+1=4466,4466÷11=2,所以W(36,10)=2.(1)计算:W(20,18);(2)若a=10+x,b=10y+8(0≤x9,1≤y≤9,x,y都是自然数).①用含x的式子表示W(a,36);用含y的式子表示W(b,49);②当150W(a,36)+W(b,49)=62767时,求W(5a,b)的最大值.23.(10分)在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,(1)如图1,求证:△AMC≌△AND;(2)如图1,若DF=,求AE的长;(3)如图2,将△CDF绕点D顺时针旋转(),点C,F的对应点分别为、,连接、,点G是的中点,连接AG,试探索是否为定值,若是定值,则求出该值;若不是,请说明理由.24.(10分)有20个边长为1的小正方形,排列形式如图所示,请将其分割,拼接成一个正方形,求拼接后的正方形的边长.25.(12分)如图,在中,,,,,求的面积.26.我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】分析:先用直角三角形的边长表示出阴影部分的面积,再根据勾股定理可得:AB2=AC2+BC2,进而可将阴影部分的面积求出.详解:S阴影=AC2+BC2+AB2=(AB2+AC2+BC2),∵AB2=AC2+BC2=1,∴AB2+AC2+BC2=50,∴S阴影=×50=1.故选D.点睛:本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.2、D【解题分析】
根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【题目详解】解:A、四个角都相等的四边形是矩形,是真命题;B、正方形的对角线所在的直线是它的对称轴,是真命题;C、对角线互相平分且平分每一组对角的四边形是菱形,是真命题;D、一组对边相等且平行的四边形是平行四边形,是假命题;故选D.【题目点拨】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、C【解题分析】
根据分式为0的条件、命题的概念、不等式的性质、平行四边形的判定定理进行判断即可.【题目详解】①当x=2时,分式无意义,①是假命题;②每一个命题都有逆命题,②是真命题;③如果a>b,c>0,那么ac>bc,③是假命题;④顺次连接任意四边形各边中点得到的四边形是平行四边形,④是真命题;⑤一组对边平行,另一组对边相等的四边形不一定是平行四边形,⑤是假命题,故选C.4、A【解题分析】
连接BD,BF可证△DBF为直角三角形,在通过直角三角形中斜边上的中线等于斜边的一半即可【题目详解】如图连接BD,BF;∵四边形ABCD和四边形BEFG都为正方形,AB=m,BE=n,∴∠DBF=90°,DB=,BF=,∴DF=,∵H为DF的中点,∴BH==,故选A【题目点拨】熟练掌握直角三角形中斜边上的中线等于斜边的一半和辅助线作法是解决本题的关键5、B【解题分析】
根据勾股定理求出OA的长,根据实数与数轴的知识解答.【题目详解】解:则点A对应的数是:1.4故选:B【题目点拨】本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.6、A【解题分析】
根据分式有意义的条件:分母不等于0,即可求解.【题目详解】解:根据题意得:x-1≠0,
解得:x≠1.
故选:A.【题目点拨】此题考查分式有意义的条件,正确理解条件是解题的关键.7、B【解题分析】试题解析:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.8、C【解题分析】
将原式进行因式分解即可求出答案.【题目详解】解:原式=(x2-y2)(a2-b2)=(x-y)(x+y)(a-b)(a+b)由条件可知,(x-y)(x+y)(a-b)(a+b)可表示为“爱我中华”故选C.【题目点拨】本题考查因式分解的应用,涉及平方差公式,提取公因式法,并考查学生的阅读理解能力.9、D【解题分析】
分析图象,可知该图象是路程与时间的关系,先离家逐渐变远,然后距离不变,在逐渐变近,据此进行判断即可得.【题目详解】通过分析图象和题意可知,行走规律是:离家逐渐远去,离家距离不变,离家距离逐渐近,所以小王散步行走的路线可能是故选D.【题目点拨】本题考查了函数的图象,根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论是解题的关键.10、C【解题分析】
根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【题目详解】A.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B.由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D.由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【题目点拨】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小11、B【解题分析】
根据题意,结合员工工资情况,从统计量的角度分析可得答案.【题目详解】根据题意,了解这家公司的员工的工资的中等水平,结合员工情况表,即要全面的了解大多数员工的工资水平,故最应该关注的数据的中位数,故选:B.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.12、C【解题分析】
首先根据题意,只要含有同类项即可合并,然后逐一进行化简,得出A、B、D选项都含有同类项,而C选项不含同类项,故选C.【题目详解】解:根据题意,只要含有同类项即可合并,A中=,可以与进行合并;B中=,可以与进行合并;C中=,与无同类项,不能合并;D中=,可以与进行合并.故选C.【题目点拨】此题主要考查二次根式的化简与合并.二、填空题(每题4分,共24分)13、45°【解题分析】
试题解析:∵四边形ABCD为平行四边形,∴AD∥BC,∠B=∠D,且故答案为点睛:平行四边形的对角相等,邻角互补.14、【解题分析】
根据“a的3倍与b的差不超过5”,则.【题目详解】解:根据题意可得出:;故答案为:【题目点拨】此题主要考查了由实际问题抽象出一元一次不等式,注意不大于即为小于等于.15、901【解题分析】
解:平均数=,方差=故答案为:90;1.16、39cm60cm1【解题分析】
根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=AD=CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【题目详解】∵BE、CE分别平分∠ABC、∠BCD,∴∠1=∠3=∠ABC,∠DCE=∠BCE=∠BCD,在▱ABCD中,AB=CD,AD=BC,AD∥BC,AB∥CD,∵AD∥BC,AB∥CD,∴∠1=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠1,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在Rt△BCE中,根据勾股定理得:BC=13cm,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;作EF⊥BC于F,根据直角三角形的面积公式得:EF=cm,∴平行四边形ABCD的面积=BC·EF==60cm1,故答案为39cm,60cm1.【题目点拨】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17、【解题分析】
先作出Rt△ABC,根据∠A=30°,AB=5,可求得BC、AC的长度,然后根据直角三角形斜边中线等于斜边的一半求出中线BD的长度,继而可求得△ADB的周长.【题目详解】解:如图所示,∵∠ABC=90°,∠A=30°,AB=5,∴设BC=x,则AC=2x∵∴∴x=5∴BC=5,AC=10在直角三角形ABC中,∠ABC==90°,BD是AC边上的中线∴∴△ADB的周长为:故答案为:【题目点拨】本题考查了勾股定理、含30°角的直角三角形和直角三角形斜边的中线等知识,解答本题的关键是根据勾股定理求出直角边的长度.18、两组对边分別平行的四边形是平行四边形【解题分析】
根据平行四边形的判定方法即可求解.【题目详解】解:∵两块相同的含有30°角的三角尺∴AD=BC,AB=CD,∠ADB=∠DBC=90°,∠ABD=∠BDC=30°∴AB∥CD,AD∥BC∴四边形ABCD是平行四边形依据为:两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)故答案为两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)【题目点拨】此题主要考查平行四边形的的判定,解题的关键是熟知平行四边形的判定定理.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3)AE与MN的数量关系是:AE=MN,BF与FG的数量关系是:BF=FG【解题分析】(1)作辅助线,构建平行四边形PMND,再证明△ABE≌△DAP,即可得出结论;(2)连接AG、EG、CG,构建全等三角形和直角三角形,证明AG=EG=CG,再根据四边形的内角和定理得∠AGE=90°,在R△AGE中,利用直角三角形斜边上的中线等于斜边的一半得BF=AE,FG=AE,则BF=GF;(3)①AE=MN,证明△AEB≌△NMQ;②BF=FG,同理得出BF和FG分别是直角△AEB和直角△AGF斜边上的中线,则BF=AE,FG=AE,所以BF=FG.证明:(1)在图1中,过点D作PD∥MN交AB于P,则∠APD=∠AMN∵正方形ABCD∴AB=AD,AB∥DC,∠DAB=∠B=90°∴四边形PMND是平行四边形且PD=MN∵∠B=90°∴∠BAE+∠BEA=90°∵MN⊥AE于F,∴∠BAE+∠AMN=90°∴∠BEA=∠AMN=∠APD又∵AB=AD,∠B=∠DAP=90°∴△ABE≌△DAP∴AE=PD=MN(2)在图2中连接AG、EG、CG由正方形的轴对称性△ABG≌△CBG∴AG=CG,∠GAB=∠GCB∵MN⊥AE于F,F为AE中点∴AG=EG∴EG=CG,∠GEC=∠GCE∴∠GAB=∠GEC由图可知∠GEB+∠GEC=180°∴∠GEB+∠GAB=180°又∵四边形ABEG的内角和为360°,∠ABE=90°∴∠AGE=90°在Rt△ABE和Rt△AGE中,AE为斜边,F为AE的中点,∴BF=AE,FG=AE∴BF=FG(3)AE与MN的数量关系是:AE=MNBF与FG的数量关系是:BF=FG“点睛”本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质与判定,在有中点和直角三角形的前提下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.20、(1)该商家购进第一批纪念衫单价是30元;(2)每件纪念衫的标价至少是40元.【解题分析】
(1)设未知量为x,根据所购数量是第一批购进量的2倍得出方程式,解出方程即可得出结论,此题得以解决.(2)设未知量为y,根据题意列出一元一次不等式,解不等式可得出结论.【题目详解】(1)设该商家购进第一批纪念衫单价是x元,则第二批纪念衫单价是(x+5)元,由题意,可得:,解得:x=30,检验:当x=30时,x(x+5)≠0,∴原方程的解是x=30答:该商家购进第一批纪念衫单价是30元;(2)由(1)得购进第一批纪念衫的数量为1200÷30=40(件),则第二批的纪念衫的数量为80(件)设每件纪念衫标价至少是a元,由题意,可得:40×(a﹣30)+(80﹣20)×(a﹣35)+20×(0.8a﹣35)≥640,化简,得:116a≥4640解得:a≥40,答:每件纪念衫的标价至少是40元.【题目点拨】本题考查分式方程的应用,一元一次不等式的应用,解决此类题的关键是要根据题意找出题目中的等量或不等量关系,根据关系列方程或不等式解决问题.21、(1)①见解析;②60°;(1)见解析;(3)见解析.【解题分析】
(1)①由△DOE≌△BOF,推出EO=OF,由OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可;②先证明∠ABD=1∠ADB,推出∠ADB=30°,即可解决问题;(1)延长BE到M,使得EM=EJ,连接MJ,由菱形性质,∠B=600,得EB=BFBE=IM=BF,由∠MEJ=∠B=600,可证得ΔMEJ是等边三角形,可得MJ在RtΔIHF中,由∠IHF=900,∠IFH=60(3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【题目详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD//∴∠EDO=在ΔDOE和ΔBOF中,∠EDO=∠FBOOD=OB∴ΔDOE≅∴EO=∵OB=∴四边形EBFD是平行四边形,∵EF⊥∴EB=∴四边形EBFD是菱形.②∵四边形BFDE是菱形,∴∠EBD=∠EDB,∵BE平分∠ABD,∴∠EBD=∠ABE,∴∠EBD=∠ABE=∠EDB,∵四边形ABCD是矩形,∴∠A=900∴∠EBD+∠ABE+∠EDB=900∴∠EBD=∠ABE=∠EDB=300∴∠EBF=2∠EBD=(1)结论:IH=理由:如图1中,延长BE到M,使得EM=EJ,连接∵四边形EBFD是菱形,∠B=∴EB=∴∠JDH=在ΔDHJ和ΔGHF中,∠DHG=∠GHFDH=GH∴ΔDHJ≅∴DJ=∴EJ=∴BE=∵∠MEJ=∴ΔMEJ是等边三角形,∴MJ=EM在ΔBIF和ΔMJI中,BI=MJ∠B=∠M∴ΔBIF≅∴IJ=IF,∵HJ=∴IH⊥∵∠BFI+∴∠MIJ+∴∠JIF=∴ΔJIF是等边三角形,在RtΔIHF中,∵∠IHF=900∴∠FIH=∴IH=(3)结论:EG理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,DE=DE∠EDG=∠EDM∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°,∴EC1+CM1=EM1,∵EG=EM,AG=CM,∴GE1=AG1+CE1.【题目点拨】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.22、(1)308;(2)①W(a,36)=[1+x+1306+10x)÷11;W(b,49)=(489+1000y+4098+100y)÷11;②W(5a,b)最大值为3.【解题分析】
(1)根据题目中新定义的运算计算即可;(2)①根据题目中新定义的运算表示出来即可;②根据①中表示出来的,并且已知x和y的取值范围求解即可.【题目详解】解:(1)W(20,18)=(1280+2108)÷11=3388÷11=308;(2)①W(a,36)=[1+x+1306+10x)÷11;W(b,49)=(489+1000y+4098+100y)÷11;②∵当150W(a,36)+W(b,49)=62767∴150([1+x+1306+10x)÷11]+(489+1000y+4098+100y)÷11=627673x+2y=29,∴x=5,y=7,x=7,y=4,x=9,y=1,∴a=15,b=78,a=17,b=48,a=19,b=18,∴W(75,78)=3,W(85,48)=1213,W(95,18)=1013,∴W(5a,b)最大值为3.【题目点拨】二元一次方程的整数解及实数的混合运算是本题的考点,理解题目中新定义的运算是解题的关键.23、(1)见解析;(2)AE=;(3)(3),理由见解析.【解题分析】
(1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明.(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=,则AE=GE=,得到△GBE是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt△AMC≌Rt△AND,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 难点解析-人教版八年级物理上册第6章质量与密度-质量章节训练试卷(含答案解析)
- 2025年互联网与信息技术行业生成式AI内容安全法律责任认定考核试卷
- 考点解析人教版八年级物理上册第5章透镜及其应用-透镜同步测试试卷(解析版)
- 难点解析人教版八年级物理上册第5章透镜及其应用-透镜专题攻克试题(含答案解析)
- 2025年数字人民币试点操作考核试卷(策略与评估类)
- 重难点解析人教版八年级物理上册第5章透镜及其应用-透镜专题训练试卷
- 考点解析-人教版八年级上册物理光现象《光的反射》达标测试试卷(解析版)
- 考点解析-人教版八年级上册物理《物态变化》章节测试试题(含解析)
- 知识产权法公有领域问题研究
- 著作权质押合同(标准版)
- 事故隐患内部报告奖励制度
- 2024年广东省中考满分作文《当好自己故事的主角》2
- DB37-T 5001-2021 住宅工程外窗水密性现场检测技术规程
- 冬季心血管疾病的预防
- 心衰患者出入量管理研究进展
- 安全部经理竞聘汇报
- 《物料摆放规范》课件
- 《智能建造技术与装备》 课件 第二章 BIM技术与应用
- 基于传统知识体系的民族医药标准化研究
- 2024年中国香辣酥市场调查研究报告
- 天津市和平区2024-2025学年七年级上期中考试数学试题
评论
0/150
提交评论