2024届湖南省长沙市湘一芙蓉、一中学双语学校八年级数学第二学期期末统考模拟试题含解析_第1页
2024届湖南省长沙市湘一芙蓉、一中学双语学校八年级数学第二学期期末统考模拟试题含解析_第2页
2024届湖南省长沙市湘一芙蓉、一中学双语学校八年级数学第二学期期末统考模拟试题含解析_第3页
2024届湖南省长沙市湘一芙蓉、一中学双语学校八年级数学第二学期期末统考模拟试题含解析_第4页
2024届湖南省长沙市湘一芙蓉、一中学双语学校八年级数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省长沙市湘一芙蓉、一中学双语学校八年级数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是()A.(1)(2)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3)2.以下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,5cm C.6cm,8cm,10cm D.5cm,12cm,18cm3.定义新运算“”如下:当时,;当时,,若,则的取值范围是()A.或 B.或C.或 D.或4.如图,菱形ABCD的一边AB的中点E到对角线交点O的距离为4cm,则此菱形的周长为()A.8cm B.16cm C.cm D.32cm5.如图,的对角线,相交于点,点为中点,若的周长为28,,则的周长为()A.12 B.17 C.19 D.246.如图,在△ABC中,AB=AC,∠A=36°,以点B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD的度数是()A.18° B.36° C.72° D.108°7.如图,已知四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形 D.当∠ABC=90°时,它是正方形8.如图,已知矩形ABCD的对角线AC的长为10cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为()A.25cm B.20cmC.20cm D.20cm9.一个多边形每个外角都是,则该多边形的边数是()A.4 B.5 C.6 D.710.据益阳气象部门记载,2018年6月30日益阳市最高气温是33℃,最低气温是24℃,则当天益阳市气温(℃)的变化范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.12.已知一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),则关于x的方程x+2=mx+n的解是__________.13.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.14.如图所示,点A(﹣3,4)在一次函数y=﹣3x+b的图象上,该一次函数的图象与y轴的交点为B,那么△AOB的面积为_____.15.正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,按如图所示的方式放置在平面直角坐标系中,若点A1、A2、A3和C1、C2、C3…分别在直线y=x+1和x轴上,则点B2019的坐标是_____.16.如图,在菱形中,,菱形的面积为15,则菱形的对角线之和为__.17.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有_____(只填序号).18.若分式的值为0,则__.三、解答题(共66分)19.(10分)如图,在△ABC中,点E是边AC上一点,线段BE垂直于∠BAC的平分线于点D,点M为边BC的中点,连接DM.(1)求证:DM=CE;(2)若AD=6,BD=8,DM=2,求AC的长.20.(6分)解方程:(1)3x(x﹣1)=2﹣2x;(2)2x2﹣4x﹣1=1.21.(6分)已知,求的值.22.(8分)如图,在▱ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若AB=4,∠ABC=60°,求OC的长.23.(8分)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?24.(8分)已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.25.(10分)如图,在正方形ABCD的外侧,作等边三角形BCE,连接AE,DE.(1)求证:AE=DE(2)过点D作DF⊥AE,垂足为F,若AB=2cm,求DF的长.26.(10分)钓鱼岛是我国的神圣领土,中国人民维护国家领土完整的决心是坚定的,多年来,我国的海监、渔政等执法船定期开赴钓鱼岛巡视.某日,我海监船(A处)测得钓鱼岛(B处)距离为20海里,海监船继续向东航行,在C处测得钓鱼岛在北偏东45°的方向上,距离为10海里,求AC的距离.(结果保留根号)

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】试题分析:根据全等的直角三角形的性质依次分析各小题即可判断.用两个全等的直角三角形一定可以拼成平行四边形、矩形、等腰三角形故选A.考点:图形的拼接点评:图形的拼接是初中数学平面图形中比较基础的知识,,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.2、C【解题分析】

根据勾股定理的逆定理对四组数据进行逐一判断即可.【题目详解】A、∵12+22≠32,∴不能构成直角三角形;B、∵,∴不能构成直角三角形;C、∵62+82=102,∴能构成直角三角形;D、∵52+122≠182,∴不能构成直角三角形,故选C.【题目点拨】本题考查的是用勾股定理的逆定理判断三角形的形状,通常是看较小的两边的平方和是否等于最长边的平方,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.3、D【解题分析】

分3>x+2和3<x+2两种情况,根据新定义列出不等式求解可得.【题目详解】当3>x+2,即x<1时,3(x+2)+x+2>0,

解得:x>-2,

∴-2<x<1;

当3<x+2,即x>1时,3(x+2)-(x+2)>0,

解得:x>-2,

∴x>1,

综上,-2<x<1或x>1,

故选:D.【题目点拨】考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.4、D【解题分析】

根据菱形的性质可知AO=OC,继而根据中位线定理求得BC长,再根据菱形的四条边相等即可求得答案.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AE=BE,∴BC=2EO=2×4cm=8cm,即AB=BC=CD=AD=8cm,即菱形ABCD的周长为32cm,故选D.【题目点拨】本题考查了菱形的性质,三角形中位线定理,熟练掌握相关性质与定理是解题的关键.5、A【解题分析】

由四边形ABCD是平行四边形,根据平行四边形的性质可得OB=OD,再由E是CD中点,即可得BE=BC,OE是△BCD的中位线,由三角形的中位线定理可得OE=AB,再由▱ABCD的周长为28,BD=10,即可求得AB+BC=14,BO=5,由此可得BE+OE=7,再由△OBE的周长为=BE+OE+BO即可求得△OBE的周长.【题目详解】∵四边形ABCD是平行四边形,∴O是BD中点,OB=OD,又∵E是CD中点,∴BE=BC,OE是△BCD的中位线,∴OE=AB,∵▱ABCD的周长为28,BD=10,∴AB+BC=14,∴BE+OE=7,BO=5∴△OBE的周长为=BE+OE+BO=7+5=1.故选A.【题目点拨】本题考查了平行四边形的性质及三角形的中位线定理,熟练运用性质及定理是解决问题的关键.6、B【解题分析】

由AB=AC,知道顶∠A的度数,就可以知道底∠C的度数,还知道BC=BD,就可以知道∠CDB的度数,在利用三角形的外角∠A+∠ABD=∠CDB,就可以求出ABD的度数【题目详解】解,∵AB=AC,∠A=36°,∴∠C=72°,又∵BC=BD,∴∠BDC=∠C=72°,又∵∠A+∠ABD=∠BDC∴∠ABD=∠BDC-∠A=72°-36°=36°【题目点拨】本题主要考查等腰三角形的性质,结合角度的关系进行求解7、D【解题分析】

A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B.

∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;C.根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;D.有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.8、D【解题分析】

根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为10,那么就求得了各边长,让各边长相加即可.【题目详解】∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=AC=5cm,同理EF=5cm,根据矩形的对角线相等,连接BD,得到:EH=FG=5cm,∴四边形EFGH的周长为20cm.故选D.【题目点拨】本题考查三角形中位线等于第三边的一半的性质.9、B【解题分析】

用多边形的外角和360°除以72°即可.【题目详解】解:边数n=360°÷72°=1.故选:B.【题目点拨】本题考查了多边形的外角和等于360°,是基础题,比较简单.10、D【解题分析】

根据题意和不等式的定义,列不等式即可.【题目详解】解:根据题意可知:当天益阳市气温(℃)的变化范围是故选D.【题目点拨】此题考查的是不等式的定义,掌握不等式的定义是解决此题的关键.二、填空题(每小题3分,共24分)11、x<﹣2【解题分析】

根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.【题目详解】解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),∴一次函数图象经过第二、三、四象限,∴当x<-2时,y>1,即ax+b>1,∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、x=-4【解题分析】

先根据一次函数y=x+2的解析式求出点P的坐标,然后利用两个一次函数图象的交点与方程x+2=mx+n的解的关系即可得出答案.【题目详解】∵一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),∴,解得,∴.∵两个一次函数的图象的交点的横坐标为x+2=mx+n的解,∴关于x的方程x+2=mx+n的解是,故答案为:.【题目点拨】本题主要考查两个一次函数的交点与一元一次方程的解的关系,掌握两个一次函数的交点与一元一次方程的解的关系是解题的关键.13、(3,1).【解题分析】∵四边形ABCD为平行四边形.∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,∴C(3,1).14、【解题分析】

把点A(﹣3,4)代入y=﹣3x+b求出点B的坐标,然后得到OB=5,利用A的坐标即可求出△AOB的面积.【题目详解】解:∵点A(﹣3,4)在一次函数y=﹣3x+b的图象上,∴9+b=4,∴b=-5,∵一次函数图象与y轴的交点的纵坐标就是一次函数的常数项上的数,∴点B的坐标为:(0,-5),∴OB=5,而A(﹣3,4),S△AOB=.故答案为:.【题目点拨】本题考查了一次函数图像上点的坐标特征,一次函数与坐标轴的交点,以及三角形的面积,解决本题的关键是找到所求三角形面积的底边以及底边上的高的长度.15、.【解题分析】

先求得A1(0,1),OA1=1,然后根据正方形的性质求出C1(1,0),B1(1,1),同样的方法求出C2(3,0),B2(3,2),C3(7,0),B3(7,4),……,从而有Cn(2n-1,0),Bm(2n-1,2n-1),由此即可求得答案.【题目详解】当x=0时,y=x+1=1,∴A1(0,1),OA1=1,∵正方形A1B1C1O,∴A1B1=B1C1=OC1=OA1=1,∴C1(1,0),B1(1,1),当x=1时,y=x+1=2,∴A2(1,2),C1A2=2,∵正方形A2B2C2C1,∴A2B2=B2C2=C1C2=C1A1=2,∴C2(3,0),B2(3,2),当x=3时,y=x+1=4,∴A3(3,4),C2A3=4,∵正方形A3B3C3C2,∴A3B3=B3C3=C2C3=C2A3=4,∴C3(7,0),B3(7,4),……∴Cn(2n-1,0),Bm(2n-1,2n-1),∴B2019(22019-1,22018),故答案为(22019-1,22018).【题目点拨】本题考查一次函数图象上点的坐标特征、正方形的性质,解题的关键是明确题意,找出各个点之间的关系,利用数形结合的思想解答问题.16、【解题分析】

由菱形的性质得出,,,由勾股定理和良宵美景得出OA2+OB2=16①,2OB×OB=15②,①+②得:(OA+OB)2=31,即可得出结果.【题目详解】解:四边形是菱形,,,,,菱形的面积为15,①,,②,①②得:,,;故答案为:.【题目点拨】本题考查了菱形的性质、勾股定理、完全平方公式;熟练掌握菱形的性质是解题的关键.17、①②④⑤【解题分析】

①②∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=⊂FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=,MC=DF=﹣2,∴FC=2﹣DF=2﹣(﹣2)=4﹣,S△AFC=CF•AD≠1,所以选项③不正确;④AF===,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤在Rt△FEC中,EG⊥FC,∴=FG•CG,cos∠FCE=,∴CG===1,∴DG=CG,∴=FG•DG,故选项⑤正确;本题正确的结论有4个,故答案为①②④⑤.18、2【解题分析】

根据分式的值为零的条件即可求出答案.【题目详解】解:由题意可知:,解得:,故答案为:2;【题目点拨】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本题属于基础题型.三、解答题(共66分)19、(1)见解析(2)AC=1【解题分析】

(1)证△BAD≌△EAD,推出AB=AE,BD=DE,根据三角形的中位线性质得出DM=CE即可;

(2)根据勾股定理求出AB,求出AE,根据三角形的中位线求出CE,即可得出答案.【题目详解】∵AD⊥BE,

∴∠ADB=∠ADE=90°,

∵AD为∠BAC的平分线,

∴∠BAD=∠EAD,

在△BAD和△EAD中,,

∴△BAD≌△EAD(SAS),

∴AB=AE,BD=DE,

∵M为BC的中点,

∴DM=CE

(2)∵在Rt△ADB中,∠ADB=90°,AD=6,BD=8,

∴由勾股定理得:AE=AB=,

∵DM=2,DM=CE,

∴CE=4,

∴AC=10+4=1.【题目点拨】本题考查了全等三角形的性质和判定,三角形的中位线,勾股定理的应用,解此题的关键是推出△BAD≌△EAD,题目比较好,难度适中.20、(1)x1=1,x2=﹣;(2)x1=1+,x2=1﹣【解题分析】

(1)方程整理后,利用因式分解法求出解即可;(2)方程整理后,利用配方法求出解即可.【题目详解】解:(1)3x(x﹣1)=2﹣2x,整理得:3x(x﹣1)+2(x﹣1)=1,分解因式得:(x﹣1)(3x+2)=1,可得x﹣1=1或3x+2=1,解得:x1=1,x2=-;(2)2x2﹣4x﹣1=1,方程整理得:x2﹣2x=,平方得:x2﹣2x+1=+1,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1-.【题目点拨】本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键.21、-.【解题分析】

将分式通分、化简,再将已知条件变形,整体代入.【题目详解】解:=-÷=-=-∵∴1-即1-=1-∴-=-∴原式=-【题目点拨】本题考查分式的化简,整体代入的思想.22、(1)证明见解析;(2).【解题分析】

(1)首先证明四边形ABEF是平行四边形,然后根据邻边相等的平行四边形是菱形即可证明;(2)过点O作OG⊥BC于点G.分别在Rt△OEG,Rt△OCG中,由含30度角的直角三角形的性质和勾股定理解答即可.【题目详解】(1)∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.∵E,F分别是BC,AD的中点,∴BEBC,AFAD,∴BE=AF,∴四边形ABEF是平行四边形.∵BC=2AB,∴AB=BE,∴平行四边形ABEF是菱形.(2)过点O作OG⊥BC于点G,如图所示,∵E是BC的中点,BC=2AB,∴BE=CE=AB=1.∵四边形ABEF是菱形,∠ABC=60°,∴BE=CE=AB=1,∠OBE=30°,∠BOE=90°,∴OE=2,∠OEB=60°,∴GE=1,OGGE,∴GC=GE+CE=5,∴OC2.【题目点拨】本题考查平行四边形的性质、菱形的判定和性质、勾股定理、含30度角的直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23、(1)购买1块电子白板需要15000元,一台笔记本电脑需要4000元(2)有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元【解题分析】

(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案.(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可.(3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用.【题目详解】(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得:,解得:.答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元.(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得:,解得:.∵a为整数,∴a=99,100,101,则电脑依次买:297,296,295.∴该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元,则W=4000z+15000(396﹣z)=﹣11000z+5940000,∵W随z的增大而减小,∴当z=297时,W有最小值=2673000(元)∴当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元.24、(1)证明见解析;(2)四边形DEBF的周长为12,面积是4【解题分析】分析:(1)证明EF、BD互相平分,只要证DEBF是平行四边形;利用两组对边分别平行来证明.

(2)求四边形DEBF的周长,求出BE和DE即可.详解:(1)∵四边形ABCD是平行四边形∴CD∥AB,CD=AB,AD=BC∵DE、BF分别是∠ADC和∠ABC的角平分线∴∠ADE=∠CDE,∠CBF=∠ABF∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF∴∠AED=∠ADE,∠CFB=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论