




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省保定市第十七中学数学八下期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.下列方程中,有实数根的方程是()A.x4+16=0 B.x2+2x+3=0 C. D.3.关于的方程有两实数根,则实数的取值范围是()A. B. C. D.4.某校运动队在一次队内选拔比赛中,甲、乙、丙、丁四位运动员的平均成绩相等,方差分别为0.8、1.2、3.1、0.6,那么这四位运动员中,发挥较稳定的是()A.甲 B.乙 C.丙 D.丁5.在平面直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点E(﹣3,4)关于第二象限的平分线对称D.点A与点F(3,﹣4)关于原点对称6.若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为()A.10 B.7或10 C.4 D.7或47.如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18 B.93C.6 D.条件不够,不能确定8.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是()A.30° B.15° C.18° D.20°9.下列图形中,是轴对称图形的有()①正方形;②菱形;③矩形;④平行四边形;⑤等腰三角形;⑥直角三角形A.6个 B.5个 C.4个 D.3个10.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=,BO=3,那么AC的长为()A.2 B. C.3 D.4二、填空题(每小题3分,共24分)11.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT的长为_____.12.如图,在菱形OABC中,点B在x轴上,点A的坐标为,则点C的坐标为______.13.已知,则的值为_____.14.甲、乙两人进行射击比赛,在相同条件下各射击12次,他们的平均成绩各为8环,12次射击成绩的方差分别是:S甲=3,S乙=2.5,成绩较为稳定的是__________.(填“甲”或“乙”)15.如图,直线y=﹣x+4分别与x轴,y轴相交于点A,B,点C在直线AB上,D是坐标平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_____.16.已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.17.有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.18.如图,在平面直角坐标系xOy中,直线l1,l2分别是函数y=k1x+b1和y=k2x+b2的图象,则可以估计关于x的不等式k1x+b1>k2x+b2的解集为_____.三、解答题(共66分)19.(10分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?
A型智能手表
B型智能手表
进价
130元/只
150元/只
售价
今年的售价
230元/只
20.(6分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.21.(6分)如图,一次函数的图象与正比例函数的图象交于点,与轴交于点,且点的纵坐标为4,.(1)求一次函数的解析式;(2)将正比例函数的图象向下平移3个单位与直线交于点,求点的坐标.22.(8分)探索与发现(1)正方形ABCD中有菱形PEFG,当它们的对角线重合,且点P与点B重合时(如图1),通过观察或测量,猜想线段AE与CG的数量关系,并证明你的猜想;(2)当(1)中的菱形PEFG沿着正方形ABCD的对角线平移到如图2的位置时,猜想线段AE与CG的数量关系,只写出猜想不需证明.23.(8分)某商城经销一款新产品,该产品的进价6元/件,售价为9元/件.工作人员对30天销售情况进行跟踪记录并绘制成图象,图中的折线OAB表示日销售量(件)与销售时间(天)之间的函数关系.(1)第18天的日销售量是件(2)求与之间的函数关系式,并写出的取值范围(3)日销售利润不低于900元的天数共有多少天?24.(8分)如图,四边形是平行四边形,是边上一点.(1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;(2)在(1)的条件下,若,,求四边形的周长.25.(10分)如图,平行四边形的两条对角线相交于点、分别是的中点,过点作任一条直线交于点,交于点,求证:(1);(2).26.(10分)求的值.解:设x=,两边平方得:,即,x2=10∴x=.∵>0,∴=.请利用上述方法,求的值.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合的图形叫做中心对称图形,根据这两点即可判断.【题目详解】解:A、是轴对称图形,不是中心对称图形.故A错误;B、是轴对称图形,不是中心对称图形.故B错误;C、是轴对称图形,也是中心对称图形.故C正确;D、不是轴对称图形,是中心对称图形.故D错误.故选:C.【题目点拨】本题主要考查的是轴对称图形和中心对称图形的定义,掌握这两个知识点是解题的关键.2、C【解题分析】
利用在实数范围内,一个数的偶数次幂不能为负数对A进行判断;利用判别式的意义对B进行判断;利用分子为0且分母不为0对C进行判断;利用非负数的性质对D进行判断.【题目详解】解:A、因为x4=﹣16<0,所以原方程没有实数解,所以A选项错误;B、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B选项错误;C、x2﹣4=0且x﹣2≠0,解得x=﹣2,所以C选项正确;D、由于x=0且x﹣1=0,所以原方程无解,所以D选项错误.故选:C.【题目点拨】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则3、A【解题分析】
根据方程有实数根列不等式即可求出答案.【题目详解】∵方程有两实数根,∴∆,即16-4a,∴,故选:A.【题目点拨】此题考查一元二次方程的判别式,根据一元二次方程的根的情况求出未知数的值,正确掌握根的三种情况是解题的关键.4、D【解题分析】
样本中每个数据与平均数的差的平方的平均数叫做样本方差,方差的值反映一组数据的稳定性和波动情况,方差的值越小说明稳定性好、波动小,故利用比较方差大小即可.【题目详解】因为,所以最小,故发挥最稳定的是丁.故选D.【题目点拨】本题主要考查数据的分析.5、D【解题分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反;关于第二象限角平分线的对称的两点坐标的关系,纵横坐标交换位置且变为相反数可得答案.【题目详解】解:A、点A的坐标为(-3,4),∴则点A与点B(-3,-4)关于x轴对称,故此选项错误;
B、点A的坐标为(-3,4),∴点A与点C(3,-4)关于原点对称,故此选项错误;
C、点A的坐标为(-3,4),∴点A与点E(-3,4)重合,故此选项错误;
D、点A的坐标为(-3,4),∴点A与点F(3,-4)关于原点对称,故此选项正确;
故选D.【题目点拨】此题主要考查了关于xy轴对称点的坐标点的规律,以及关于原点对称的点的坐标特点,关键是熟练掌握点的变化规律,不要混淆.6、C【解题分析】
根据等腰三角形性质分为两种情况解答:当边长4cm为腰或者4cm为底时【题目详解】当4cm是等腰三角形的腰时,则底边长18-8=10cm,此时4,4,10不能组成三角形,应舍去;当4cm是等腰三角形的底时,则腰长为(18-4)÷2=7cm,此时4,7,7能组成三角形,所以此时腰长为7,底边长为4,故选C【题目点拨】本题考查等腰三角形的性质与三角形三边的关系,本题关键在于分情况计算出之后需要利用三角形等边关系判断7、C【解题分析】
因为要求PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,把三条线段转化到一条直线上,求出等于AB,根据三角形的周长求出AB即可.【题目详解】延长EP交AB于点G,延长DP交AC与点H.∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB=183故选C.【题目点拨】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.8、C【解题分析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【题目详解】∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C【题目点拨】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.9、C【解题分析】
根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【题目详解】解:①正方形,是轴对称图形;②菱形,是轴对称图形;③矩形,是轴对称图形;④平行四边形,不是轴对称图形;⑤等腰三角形,是轴对称图形;⑥直角三角形,不一定,是轴对称图形,故轴对称图形共4个.故选:C.【题目点拨】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.10、D【解题分析】
首先利用勾股定理计算AO长,再根据平行四边形的性质可得AC长.【题目详解】∵AC⊥AB,AB=,BO=3,∴AO==2,∵四边形ABCD是平行四边形,∴AC=2AO=4,故选:D.【题目点拨】此题考查平行四边形的性质,解题关键是掌握平行四边形对角线互相平分.二、填空题(每小题3分,共24分)11、2【解题分析】
根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.【题目详解】∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,∴∠ADB=∠CGE=45°,∴∠GDT=180°−90°−45°=45°,∴∠DTG=180°−∠GDT−∠CGE=180°−45°−45°=90°,∴△DGT是等腰直角三角形,∵两正方形的边长分别为4,8,∴DG=8−4=4,∴GT=×4=2.故答案为2.【题目点拨】本题考查了正方形的性质,等腰直角三角形的判定与性质.关键是掌握正方形的对角线平分一组对角12、【解题分析】
根据轴对称图形的性质即可解决问题.【题目详解】四边形OABC是菱形,、C关于直线OB对称,,,故答案为.【题目点拨】本题考查菱形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握菱形的性质,利用菱形是轴对称图形解决问题.13、【解题分析】
根据二次根式有意义的条件:被开方数是非负数,即可求得x的值,进而求得y的值,然后代入求解即可.【题目详解】解:根据题意得:,解得:,∴,∴,故答案为.【题目点拨】考查了二次根式的意义和性质.概念:式子(a≥1)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为1,这几个非负数都为1.14、乙【解题分析】
根据方差的意义,比较所给的两个方差的大小即可得出结论.【题目详解】∵,乙的方差小,∴本题中成绩较为稳定的是乙,故填乙.【题目点拨】本题考查方差在实际中的应用.方差反应一组数据的稳定程度,方差越大这组数据越不稳定,方差越小,说明这组数据越稳定.15、(2,﹣2)或(6,2)【解题分析】分析:设点C的坐标为(x,﹣x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.详解:∵一次函数解析式为线y=﹣x+4,∴B(0,4),A(4,0),如图一.∵四边形OADC是菱形,设C(x,﹣x+4),∴OC=OA==4,整理得:x2﹣6x+8=0,解得x1=2,x2=4,∴C(2,2),∴D(6,2);如图二.∵四边形OADC是菱形,设C(x,﹣x+4),∴AC=OA==4,整理得:x2﹣8x+12=0,解得x1=2,x2=6,∴C(6,﹣2),∴D(2,﹣2);故答案为(2,﹣2)或(6,2).点睛:本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.16、3【解题分析】
将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.【题目详解】把(a,3)代入一次函数解析式y=-2x+9,得3=-2a+9,解得:a=3,故答案为:3.【题目点拨】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.17、或1.【解题分析】
试题分析:此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解.根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.解:由题意可得:AB=4,∵∠C=30°,∴BC=8,AC=4,∵图中所示的中位线剪开,∴CD=AD=2,CF=BF=4,DF=2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=1,故答案为8+4或1.考点:1.图形的剪拼;2.三角形中位线定理.18、x<﹣1【解题分析】
观察函数图象得到当x<-1时,直线y=k1x+b1在直线y=k1x+b1的上方,于是可得到不等式k1x+b1>k1x+b1的解集.【题目详解】当x<-1时,k1x+b1>k1x+b1,所以不等式k1x+b1>k1x+b1的解集为x<-1.故答案为x<-1.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共66分)19、(1)180元;(2)方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.【解题分析】
(1)设今年A型智能手表每只售价x元,则去年售价每只为(x+60)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A型a只,则B型(100-a)只,获利y元,由条件表示出W与a之间的关系式,由a的取值范围就可以求出W的最大值.【题目详解】解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+60)元,根据题意得,解得:x=180,经检验,x=180是原方程的根,答:今年A型智能手表每只售价180元;(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100-a)只,根据题意得,W=(180-130)a+(230-150)(100-a)=-30a+8000,∵100-a≤3a,∴a≥25,∵-30<0,W随a的增大而减小,∴当a=25时,W增大=-30×25+8000=7250元,此时,进货方案为新进A型手表25只,新进B型手表75只,答:方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.【题目点拨】此题考查分式方程的应用,一次函数的运用,解题关键在于由销售问题的数量关系求出一次函数的解析式是关键.20、详见解析【解题分析】
由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.【题目详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠EAF,∵∠1=∠1,∴∠EAF=∠1,∴AE∥CF,∴四边形AECF是平行四边形.【题目点拨】本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.21、(1);(2)【解题分析】
(1)由A点纵坐标为4,代入正比例函数解析式,求得A点坐标,由OB=6,求得B点坐标,然后利用待定系数法求一次函数解析式;(2)由平移性质求得平移后解析式为,然后与联立方程组求两直线的交点坐标即可.【题目详解】解:(1)∵点在反比例函数的图象上,且点的纵坐标为4,∴.解得:∴∵,∴∵、在的图象上∴解得:∴一次函数的解析式为:(2)∵向下平移3个单位的直线为:∴解得:∴【题目点拨】本题考查一次函数的性质,掌握待定系数法,利用数形结合思想解题是关键.22、(1)结论:AE=CG.理由见解析;(2)结论不变,AE=CG.【解题分析】分析:(1)结论AE=CG.只要证明△ABE≌△CBG,即可解决问题.(2)结论不变,AE=CG.如图2中,连接BG、BE.先证明△BPE≌△BPG,再证明△ABE≌△CBG即可.详解:(1)结论:AE=CG.理由如下:如图1,∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD,∵四边形PEFG是菱形,∴BE=BG,∠EBD=∠GBD,∴∠ABE=∠CBG,在△ABE和△CBG中,,∴△ABE≌△CBG,∴AE=CG.(2)结论不变,AE=CG.理由如下:如图2,连接BG、BE.∵四边形PEFG是菱形,∴PE=PG,∠FPE=∠FPG,∴∠BPE=∠BPG,在△BPE和△BPG中,,∴△BPE≌△BPG,∴BE=BG,∠PBE=∠PBG,∵∠ABD=∠CBD,∴∠ABE=∠CBG,在△ABE和△CBG中,,∴△ABE≌△CBG,∴AE=CG.点睛:本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.23、(1)360;(2)y=;(3)16天【解题分析】
(1)根据图象即可得到结论;(2)根据点的坐标,利用待定系数法可求出直线OA、AB的函数关系式,即可找出y与x之间的函数关系式;(3)根据日销售量=日销售利润÷每件的利润,可求出日销售量,将其分别代入OA、AB的函数关系式中求出x值,将其相减加1即可求出日销售利润不低于900元的天数.【题目详解】解:(1)由图象知,第18天的日销售量是360件;故答案为:360;(2)当时,设直线OA的函数解析式为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025秋五年级语文上册统编版-【19 父爱之舟】交互课件
- 能否代位解除合同协议书
- 医美市场计划方案
- 商业策划方案范文6
- 公司业务拓展策划方案策划方案
- 天气主题英语说课课件
- 汽车合同协议书绿本
- 社区读书活动方案5
- 成都厨卫产品项目商业计划书模板
- 衡水智能家居设备项目商业计划书
- 专题16-家庭与婚姻-2023年高考政治复习课件(新教材新高考)
- DB34T 1709-2020 亚临界及以上电站锅炉外部检验技术导则
- 议论文阅读 专项训练-2025年中考语文复习突破(江苏专用)(解析版)
- 中国艾滋病诊疗指南(2024版)解读
- DL∕T 5161.14-2018 电气装置安装工程质量检验及评定规程 第14部分:起重机电气装置施工质量检验
- 人教版PEP英语3-6年级全部单词默写表格以及背诵版本
- 2024年新课标高考化学真题试题(原卷版+含解析)
- 专题04语法填空
- 2024年重庆市初中学业水平考试地理试卷试题真题(含答案详解)
- DL-T5153-2014火力发电厂厂用电设计技术规程
- 全运会安全保卫方案(2篇)
评论
0/150
提交评论