




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省寿县八年级数学第二学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知平面上四点,,,,一次函数的图象将四边形ABCD分成面积相等的两部分,则A.2 B. C.5 D.62.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2,则四个班体考成绩最稳定的是()A.甲班 B.乙班 C.丙班 D.丁班3.介于两个相邻整数之间,这两个整数是()A.2和3 B.3和4 C.4和5 D.5和64.如图,已知直线与相交于点(2,),若,则的取值范围是()A. B. C. D.5.点和都在直线上,则与的关系是A. B. C. D.6.如图,中,平分,交于,交于,若,则四边形的周长是()A. B. C. D.7.下列由线段、、组成的三角形中,不是直角三角形的为()A.,, B.,,C.,, D.,,8.如图,四边形ABCD是矩形,连接BD,,延长BC到E使CE=BD,连接AE,则的度数为()A. B. C. D.9.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为()A. B. C. D.10.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查九年级全体学生 B.调查七、八、九年级各30名学生C.调查全体女生 D.调查全体男生11.如图,正方形的边长为2,点为的中点,连接,将沿折叠,点的对应点为.连接CF,则的长为()A. B. C. D.12.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7 B.5 C.3 D.2二、填空题(每题4分,共24分)13.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.14.将正比例函数的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是__________.15.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为15cm,那么△ABC的周长是_________cm.16.如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有___________个.17.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.18.小天家、小亮家、学校依次在同一条笔直的公路旁(各自到公路的距离忽略不计),每天早上7点整小天都会从家出发以每分钟60米的速度走到距他家600米的小亮家,然后两人以小天同样的速度准时在7:30到校早读.某日早上7点过,小亮在家等小天的时候突然想起今天轮到自己值日扫地了,所以就以每分钟60米的速度先向学校走去,后面打算再和小天解释,小天来到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考时间忽略不计),于是他就以每分钟100米的速度去追小亮,两人之间的距离y(米)及小亮出发的时间x(分)之间的函数关系如下图所示.请问当小天追上小亮时离学校还有_____米.三、解答题(共78分)19.(8分)如图,四边形ABCD中,AC⊥BD交BD于点E,点F、M分别是AB、BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD,连接MF,NF求证:(1)BN=MN;(2)△MFN∽△BDC.20.(8分)如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.21.(8分)某数码专营店销售甲、乙两种品牌智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)43003600售价(元/部)48004200(1)该店销售记录显示.三月份销售甲、乙两种手机共17部,且销售甲种手机的利润恰好是销售乙种手机利润的2倍,求该店三月份售出甲种手机和乙种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共20部,要求购进乙种手机数不超过甲种手机数的,而用于购买这两种手机的资金低于81500元,请通过计算设计所有可能的进货方案.(3)在(2)的条件下,该店打算将四月份按计划购进的20部手机全部售出后,所获得利润的30%用于购买A,B两款教学仪器捐赠给某希望小学.已知购买A仪器每台300元,购买B仪器每台570元,且所捐的钱恰好用完,试问该店捐赠A,B两款仪器一共多少台?(直接写出所有可能的结果即可)22.(10分)近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:(收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:初一年级8858449071889563709081928484953190857685初二年级7582858576876993638490856485919668975788(整理数据)按如下分段整理样本数据:分段年级0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100初一年级a137b初二年级14285(分析数据)对样本数据边行如下统计:统计量年级平均数中位数众数方差初一年级78c90284.6初二年级8185d126.4(得出结论)(1)根据统计,表格中a、b、c、d的值分别是、、、.(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有人.(3)根据以上数据,你认为(填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).23.(10分)在平面直角坐标系中,已知,,三点的坐标.(1)写出点关于原点的对称点的坐标,点关于轴的对称点的坐标,点关于轴的对称点的坐标;(2)求(1)中的的面积.24.(10分)(1)解不等式组:(2)解分式方程:.25.(12分)先观察下列等式,再回答问题:①=1+1=2;②=2+=2;③=3+=3;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并用所学知识证明.26.如图,在中,,相交于点,点在上,点在上,经过点.求证:四边形是平行四边形.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
根据题意四边形ABCD是矩形,直线只要经过矩形对角线的交点,即可得到k的值.【题目详解】,,,,,,四边形ABCD是平行四边形,,四边形ABCD是矩形,对角线AC、BD的交点坐标为,直线经过点时,直线将四边形ABCD的面积分成相等的两部分,,.故选:B.【题目点拨】本题考查矩形的判定和性质、一次函数图象上点的坐标特征等知识,掌握中心对称图形的性质是解决问题的关键.2、A【解题分析】
直接根据方差的意义求解.【题目详解】∵S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2∴S乙2>S丁2>S丙2>S甲2,∴四个班体考成绩最稳定的是甲班.故选A.3、B【解题分析】
根据无理数的估算得出的大小范围,即可得答案.【题目详解】∵9<15<16,∴3<<4,故选B.【题目点拨】本题考查的是估算无理数的大小,根据题意估算出的大小范围是解答此题的关键.4、B【解题分析】试题解析:根据题意当x>1时,若y1>y1.故选B.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5、D【解题分析】
根据一次函数图象上点的坐标特征,将点和分别代入直线方程,分别求得和的值,然后进行比较.【题目详解】根据题意得:,即;,即;,.故选:.【题目点拨】本题考查了一次函数图象上点的坐标特征,一次函数图象上的点满足该函数的解析式.6、A【解题分析】
根据DE∥AC、DF∥AB即可得出四边形AEDF为平行四边形,再根据AD平分∠BAC即可得出∠FAD=∠FDA,即FA=FD,从而得出平行四边形AEDF为菱形,根据菱形的性质结合AF=6即可求出四边形AEDF的周长.【题目详解】∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∠EAD=∠FDA.∵AD平分∠BAC,∴∠EAD=∠FAD=∠FDA,∴FA=FD,∴平行四边形AEDF为菱形.∵AF=6,∴C菱形AEDF=4AF=4×6=1.故选A.【题目点拨】本题考查了菱形的判定与性质,解题的关键是证出四边形AEDF是菱形.本题属于基础题,难度不大,解决该题型题目时,熟记菱形的判定与性质是关键.7、D【解题分析】
欲判断三条线段是否能构成直角三角形的三边,就是判断三边的长是否为勾股数,需验证两小边的平方和是否等于最长边的平方即可.【题目详解】A、72+242=252,故线段a、b、c组成的三角形,是直角三角形,选项错误;B、42+52=41,故线段a、b、c组成的三角形,是直角三角形,选项错误;C、82+62=102,故线段a、b、c组成的三角形,是直角三角形,选项错误;D、402+502≠602,故线段a、b、c组成的三角形,不是直角三角形,选项正确.故选D.【题目点拨】本题主要考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形,8、A【解题分析】
如图,连接AC.只要证明CE=CA,推出∠E=∠CAE,求出∠ACE即可解决问题.【题目详解】如图,连接AC.∵四边形ABCD是矩形,∴AC=BD.∵EC=BD,∴AC=CE,∴∠AEB=∠CAE,易证∠ACB=∠ADB=30°.∵∠ACB=∠AEB+∠CAE,∴∠AEB=∠CAE=15°.故选A.【题目点拨】本题考查了矩形的性质、等腰三角形的判定和性质,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.9、B【解题分析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【题目详解】根据勾股定理,AB=,BC=,AC=,∵AC2+BC2=AB2=26,∴△ABC是直角三角形,∵点D为AB的中点,∴CD=AB=.故选B.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.10、B【解题分析】【分析】如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.要抽出具有代表性的调查样本.【题目详解】A.只调查九年级全体学生,没有代表性;B.调查七、八、九年级各30名学生,属于分层抽样,有代表性;C.只调查全体女生,没有代表性;D.只调查全体男生,没有代表性.故选B.【题目点拨】本题考核知识点:抽样调查.解题关键点:要了解全校学生的课外作业负担情况,抽取的样本一定要具有代表性.11、D【解题分析】
连接AF交BE于点O,过点F作MN⊥AB,由勾股定理可求BE的长,由三角形面积公式可求AO的长,由折叠的性质可得AO=OH=,AB=BF=2,由勾股定理可求BN,FN的长,由矩形的性质可求FM,MC的长,由勾股定理可求CF的长.【题目详解】解:如图,连接AF交BE于点O,过点F作MN⊥AB,∵AB∥CD,MN⊥AB,∴MN⊥CD,∵AB=2=AD,点E是AD中点,∴AE=1,∴EB=,∵S△ABE=×AB×AE=×BE×AO,∴2×1=AO,∴AO=,∵将△ABE沿BE折叠,点A的对应点为F,∴AO=OH=,AB=BF=2,∴AF=,∵AF2-AN2=FN2,BF2-BN2=FN2,∴AF2-AN2=BF2-BN2,∴-(2-BN)2=4-BN2,∴BN=,∴FN=,∵MN⊥AB,MN⊥CD,∠DCB=90°,∴四边形MNBC是矩形,∴BN=MC=,BC=MN=2,∴MF=,∴CF=.故选:D.【题目点拨】本题考查了正方形的性质,矩形的判定,勾股定理,利用勾股定理列出等式求线段的长是本题的关键.12、B【解题分析】
首先由AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,判断出Rt△AEC≌Rt△CDB,又由AE=7,BD=2,得出CE=BD=2,AE=CD=7,进而得出DE=CD-CE=7-2=5.【题目详解】解:∵AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,∴Rt△AEC≌Rt△CDB又∵AE=7,BD=2,∴CE=BD=2,AE=CD=7,DE=CD-CE=7-2=5.【题目点拨】此题主要考查直角三角形的全等判定,熟练运用即可得解.二、填空题(每题4分,共24分)13、1【解题分析】
画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【题目详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,∴4x=1,
即菱形的最大周长为1cm.
故答案是:1.【题目点拨】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.14、【解题分析】
根据“左加右减”的法则求解即可.【题目详解】解:将正比例函数的图象向右平移2个单位,得=,故答案为:.【题目点拨】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.15、1【解题分析】
根据DE是AC的垂直平分线以及AE=3cm,即可得出DA=DC且AC=6cm,再根据△ABD的周长和△ABC的周长之间的关系即可得出C△ABC的值.【题目详解】解:∵DE是AC的垂直平分线,AE=3cm,
∴AC=2AE=6cm,DA=DC.
∵C△ABD=AB+BD+DA,C△ABC=AB+BD+DC+CA=AB+BD+DA+CA=C△ABD+CA,且C△ABD=10cm,
∴C△ABC=15+6=1cm.
故答案为:1.【题目点拨】本题考查了线段垂直平分线的性质以及三角形的周长,解题的关键是找出△ABD的周长和△ABC的周长之间的关系.本题属于基础题,难道不大,解决该题型题目时,根据线段垂直平分线的性质找出相等的线段是关键.16、1【解题分析】
根据题意画出图形,根据勾股定理的逆定理进行判断即可.【题目详解】如图所示:当∠C为直角顶点时,有C1,C2两点;当∠A为直角顶点时,有C3一点;当∠B为直角顶点时,有C4,C1两点,综上所述,共有1个点,故答案为1.【题目点拨】本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.17、1.【解题分析】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=×10=1.考点:1.勾股定理;2.直角三角形斜边上的中线性质.18、1【解题分析】
根据题意和函数图象中的数据可以求得当小天追上小亮时离学校还有多少千米,本题得以解决.【题目详解】解:设小天从到小亮家到追上小亮用的时间为a分钟,由题意可得,400+60a=100a,解得,a=10,即小天从到小亮家到追上小亮用的时间为10分钟,∵小天7:00从家出发,到学校7:30,∴小天从家到学校用的时间为:30分钟,∴当小天追上小亮时离学校还有:60×30﹣600﹣100×10=1(米),故答案为1.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题(共78分)19、(1)见解析;(2)见解析【解题分析】
(1)根据等腰三角形的性质,可得是高线、顶角的角平分线,根据直角三角形的性质,可得,根据三角形外角的性质,可得,进而可知是等腰直角三角形,即得.(2)根据三角形中位线的性质,可得与的关系,根据等量代换,可得与的关系,根据等腰直角三角形,可得与的关系,根据等量代换,可得与的关系,根据同角的余角相等,可得与的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.【题目详解】(1)证明:∵,点是的中点∴,平分∵平分∴∵∴∴∴∴是等腰直角三角形∴(2)证明:∵点,分别是,的中点,∴,∵∴,即∵是等腰直角三角形∴,即∴∵∴∵∴∵∴∴∴∴【题目点拨】本题考查了相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的内角外角中位线相关性质,综合性较强,难度较大.20、(1)4;(2)【解题分析】
(1)首先根据菱形的性质得到AC和BD垂直平分,结合题意可得a2+b2=5,进而得到ab=2,结合图形的面积公式即可求出面积;(2)根据a2+b2=5,ab=2得到a+b的值,进而求出答案.【题目详解】解:(1)∵四边形ABCD是菱形,∴BD垂直平分AC,∵OA=a,OB=b,AB=,∴a2+b2=5,∵a,b满足:.∴a2b2=4,∴ab=2,∴△AOB的面积=ab=1,∴菱形ABCD的面积=4△AOB的面积=4;(2)∵a2+b2=5,ab=2,∴(a+b)2=a2+b2+2ab=7,∴a+b=,∴=.【题目点拨】本题主要考查了菱形的性质,解题的关键是根据菱形的对角线垂直平分得到a和b的数量关系,此题是一道非常不错的试题.21、(1)售出甲手机12部,乙手机5部;可能的方案为:①购进甲手机12部,乙手机8部;②购进甲手机13部,乙手机7部;(3)该店捐赠A,B两款仪器一共9台或8台.【解题分析】
(1)设售出甲手机x部,乙手机y部,根据销售甲、乙两种手机共17部,且销售甲种手机的利润恰好是销售乙种手机利润的2倍,可得出方程组,解出即可;
(2)设购进甲手机x部,则购进乙手机(20-x)部,根据购进乙种手机数不超过甲种手机数的,而用于购买这两种手机的资金低于81500元,可得出不等式组,解出即可得出可能的购进方案.
(3)先求出捐款数额,设捐赠甲仪器x台,乙仪器y台,列出二元一次方程,求出整数解即可.【题目详解】解:(1)设售出甲手机x部,乙手机y部,
由题意得,
解得:答:售出甲手机12部,乙手机5部;(2)设购进甲手机x部,则购进乙手机(20-x)部,
由题意得,
解得:12≤x<13,
∵x取整数,
∴x可取12,13,
则可能的方案为:
①购进甲手机12部,乙手机8部;
②购进甲手机13部,乙手机7部.
(3)①若购进甲手机12部,乙手机8部,此时的利润为:12×500+8×600=10800,
设捐赠甲仪器x台,乙仪器y台,
由题意得,300x+570y=10800×30%,
∵x、y为整数,
∴x=7,y=2,
则此时共捐赠两种仪器9台;
②若购进甲手机13部,乙手机7部,此时的利润为:13×500+7×600=10700,
设捐赠甲仪器x台,乙仪器y台,
由题意得,300x+570y=10700×30%,
∵x、y为整数,
∴x=5,y=3,
则此时共捐赠两种仪器8台;
综上可得该店捐赠A,B两款仪器一共9台或8台.【题目点拨】本题考查一元一次不等式组的应用、二元一次方程的应用及二元一次方程组的应用,解题关键是仔细审题,将实际问题转化为数学方程或不等式求解,难度较大.22、(1)3、6、84.5、85;(2)490;(3)“初二”,理由详见解析.【解题分析】
(1)根据给出的统计表求出a、b,根据中位数和众数的概念求出c、d;(2)用样本估计总体,得到答案;(3)根据平均数的性质解答.【题目详解】解:(1)由统计表中的数据可知,a=3,b=6,c==84.5,d=85,故答案为:3;6;84.5;85;(2)初一成绩90分以上(含90分)的人数共有:800×=240(人),初二成绩90分以上(含90分)的人数共有1000×=250(人),240+250=490(人),故答案为:490;(3)“初二”学生的体育整体水平较高,原因是:初二年级的平均数大于初一年级的平均数,故答案为:“初二”.【题目点拨】本题考查了数据的统计与分析,熟知平均数、中位数、众数、方差等的实际意义是解题的关键.23、(1)A′的坐标为(1,−5)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民用燃气安全培训教材课件
- 民爆安全检查课件
- 民法知识培训班课件
- 打包机操作考试题及答案
- 常德市中考试卷及答案
- 民族风格课件
- 电子信息产业新质生产力
- 农业新质生产力宣传片
- 新质生产力:理论与实践
- 民族服装主题课件
- GB/T 3883.3-2007手持式电动工具的安全第二部分:砂轮机、抛光机和盘式砂光机的专用要求
- 【食品生产加工技术】美国玉米片加工技术
- 罗克韦尔自动化运动控制基础-+-MAPC精讲课件
- CPR心肺复苏课件
- 化验室培训记录
- 疱疹性咽峡炎的课件
- 工业企业现场监测工况 核查表( 废 气)
- 埃菲尔铁塔精品课件
- 大班语言《我喜欢我》课件
- (公开课)26个英文字母书写笔顺动态演示(基础教育)
- 不一样的卡梅拉2-我想有颗星星幼儿绘本
评论
0/150
提交评论