河北省保定市二中学分校2024届数学八下期末达标检测试题含解析_第1页
河北省保定市二中学分校2024届数学八下期末达标检测试题含解析_第2页
河北省保定市二中学分校2024届数学八下期末达标检测试题含解析_第3页
河北省保定市二中学分校2024届数学八下期末达标检测试题含解析_第4页
河北省保定市二中学分校2024届数学八下期末达标检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市二中学分校2024届数学八下期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列式子中,不可以取1和2的是()A. B. C. D.2.菱形的两条对角线长分别为12与16,则此菱形的周长是()A.10 B.30 C.40 D.1003.将矩形按如图所示的方式折叠,得到菱形.若,则的长是()A.1 B. C. D.24.如图,函数和的图象相交于点,则不等式的解集为()A. B. C. D.5.如图,平行四边形的周长为40,的周长比的周长多10,则为()A.5 B.20 C.10 D.156.如图,点P是边长为2的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.1 B.2 C.22 D.7.如图,平行四边形ABCD中,E是AB上一点,DE、CE分别是∠ADC、∠BCD的平分线,若AD=5,DE=6,则平行四边形的面积为()A.96 B.48 C.60 D.308.在中,,则的度数为()A. B. C. D.9.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,观察图形,与∠AED相等的角有()A.4个 B.3个 C.2个 D.1个10.下列四组线段中,不能作为直角三角形三条边的是()A.8,15,17 B.1,2, C.7,23,25 D.1.5,2,2.5二、填空题(每小题3分,共24分)11.请你写出一个有一根为0的一元二次方程:______.12.在矩形中,与相交于点,,那么的度数为,__________.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.14.一组数据2,3,1,3,5,4,这组数据的众数是___________.15.某公司10月份生产了万件产品,要使12月份的产品产量达到万件,设平均每月增长的百分率是,则可列方程____.16.如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是_____cm.17.如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.18.点A(-2,3)关于x轴对称的点B的坐标是_____三、解答题(共66分)19.(10分)先化简,再求值:(x+2-)•,其中x=3+.20.(6分)如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.(1)求点A、B、D的坐标;(2)求直线BD的表达式.21.(6分)2018长春国际马拉松赛于2018年5月27日在长春市举行,其中10公里跑起点是长春体育中心,终点是卫星广场.比赛当天赛道上距离起点5km处设置一个饮料站,距离起点7.5km处设置一个食品补给站.小明报名参加了10公里跑项目.为了更好的完成比赛,小明在比赛前进行了一次模拟跑,从起点出发,沿赛道跑向终点,小明匀速跑完前半程后,将速度提高了,继续匀速跑完后半程.小明与终点之间的路程与时间之间的函数图象如图所示,根据图中信息,完成以下问题.(1公里=1千米)(1)小明从起点匀速跑到饮料站的速度为_______,小明跑完全程所用时间为________;(2)求小明从饮料站跑到终点的过程中与之间的函数关系式;(3)求小明从起点跑到食品补给站所用时间.22.(8分)如图,已知直线与交轴于点,,分别交轴于点,,,的表达式分别为,.(1)求的周长;(2)求时,的取值范围.23.(8分)如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求m和b的数量关系;(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.24.(8分)已知,线段a,直线1及1外一点A,求作:△ABC,使AB=AC,BC=a,且点B、C在直线1上.25.(10分)在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,;(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?26.(10分)如图,在平面直角坐标系xoy中,矩形OABC的顶点B坐标为(12,5),点D在CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:(1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;(2)若△BEF为等腰三角形,求此时正方形ADEF的边长;(3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据二次根式有意义的条件即可求出答案.【题目详解】A.中a≥0,所以a可以取1和2,故选项A不符合题意;B.中,即a≥1或a≤-1,所以a可以取1和2,故选项B不符合题意;C.中,-a+3≥0,即a≤3,所以a可以取1和2,故选项C不符合题意;D,当a取1和2时,二次根式无意义,故选项D符合题意.故选D.【题目点拨】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.2、C【解题分析】

首先根据题意画出图形,然后由菱形的两条对角线长分别为12与16,利用勾股定理求得其边长,继而求得答案.【题目详解】解:∵如图,菱形ABCD中,AC=16,BD=12,∴OA=AC=8,OB=BD=6,AC⊥BD,∴AB==10,∴此菱形的周长是:4×10=1.故选:C.【题目点拨】此题考查了菱形的性质以及勾股定理.注意根据题意画出图形,结合图形求解是解此题的关键.3、A【解题分析】

由矩形可得是直角,由菱形的对角线平分每组对角,再由折叠可得,在直角三角形中,由边角关系可求出答案.【题目详解】解:由折叠得:是矩形,是菱形,,在中,,,,故选:.【题目点拨】本题考查矩形的性质、菱形的性质、折叠轴对称的性质以及直角三角形的边角关系等知识,求出,把问题转化到中,由特殊的边角关系可求出结果.4、A【解题分析】

以交点为分界,结合图象写出不等式的解集即可.【题目详解】因为点A的坐标为,看函数图象,当的图象在的图像上方时,,此时故选:A.【题目点拨】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.5、A【解题分析】

由于平行四边形的对角线互相平分,那么△AOB、△BOC的周长差,实际是AB、BC的差,结合平行四边形的周长,即可得解.【题目详解】在平行四边形ABCD中,AO=OC,AB=CD,AD=BC,∵△AOB的周长比△BOC的周长少10cm,∴BC+OB+OC-(AB+OB+OA)=10cm,∴BC-AB=10cm,∵平行四边形ABCD的周长是40cm,∴AB+BC+CD+AD=40cm,∴BC+AB=20cm,∴AB=5cm.故选A.【题目点拨】本题考查平行四边形的性质,比较简单,关键是利用平行四边形的性质解题:平行四边形的对角线互相平分.​6、B【解题分析】

先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【题目详解】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.

∵菱形ABCD关于AC对称,M是AB边上的中点,

∴M′是AD的中点,

又∵N是BC边上的中点,

∴AM′∥BN,AM′=BN,

∴四边形ABNM′是平行四边形,

∴M′N=AB=1,

∴MP+NP=M′N=1,即MP+NP的最小值为1,

故选:B.【题目点拨】本题考查的是轴对称-最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.7、B【解题分析】试题解析:过点D作DF⊥AB于点F,

∵DE、CE分别是∠ADC、∠BCD的平分线,

∴∠ADE=∠CDE,∠DCE=∠BCE,

∵四边形ABCD是平行四边形,

∴AB∥DC,AD=BC=5,

∠CDE=∠DEA,∠DCE=∠CEB,

∴∠ADE=∠AED,∠CBE=∠BEC,

∴DA=AE=5,BC=BE=5,

∴AB=10,

则DF2=DE2-EF2=AD2-AF2,

故62-FE2=52-(5-EF)2,

解得:EF=3.6,

则DE==4.8,

故平行四边形ABCD的面积是:4.8×10=1.

故选B.8、D【解题分析】

由四边形ABCD是平行四边形,根据平行四边形的对角相等,易得∠C=∠A=38°.【题目详解】解:∵四边形ABCD是平行四边形,

∴∠C=∠A=38°.

故选:D.【题目点拨】此题考查了平行四边形的性质:平行四边形的对角相等.9、B【解题分析】

根据正方形的性质证明△DAE≌△ABF,即可进行判断.【题目详解】解:∵四边形ABCD是正方形,∴∠DAB=∠B=90°,AD=AB,∵AF=DE,∴△DAE≌△ABF(HL),∴∠ADE=∠BAF,∠AED=∠AFB,∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,∴∠DAG=∠AED,∵∠ADE+∠CDG=90°,∴∠CDE=∠AED.故选:B.【题目点拨】此题主要考查正方形的性质,解题的关键是熟知全等三角形的判定与性质.10、C【解题分析】

根据勾股定理的逆定理逐一判断即可.【题目详解】A.因为82+152=172,故以8,15,17为三边长能构成直角三角形,故本选项不符合题意;B.12+22=()2,故以1,2,为三边长能构成直角三角形,故本选项不符合题意;C.72+232≠252,故以7,23,25为三边长不能构成直角三角形,故本选项符合题意;D.,故以为三边长能构成直角三角形,故本选项不符合题意.故选C.【题目点拨】此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解决此题的关键.二、填空题(每小题3分,共24分)11、【解题分析】

根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.【题目详解】可以是,=0等.故答案为:【题目点拨】本题考核知识点:一元二次方程的根.解题关键点:理解一元二次方程的意义.12、【解题分析】

根据矩形的性质可得∠OAD=∠ODA,再根据三角形的外角性质可得∠AOB=∠DAO+∠ADO=46°,从而可求∠OAD度数.【题目详解】∵四边形是矩形∴OA=OC=OB=OD,∴∠DAO=∠ADO,∵∠AOB=∠DAO+∠ADO=46°,∴=∠AOB=×46°=23°即=23°.故答案为:23°.【题目点拨】此题考查矩形的性质,解决矩形中角度问题一般会运用矩形对角线分成的四个小三角形的等腰三角形的性质.13、84或24【解题分析】分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC⋅AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD−DC=9−5=4,则S△ABC=BC⋅AD=24.综上,△ABC的面积为24或84.故答案为24或84.点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.14、1【解题分析】

根据众数的概念即可得到结果.【题目详解】解:在这组数据中1出现了2次,出现的次数最多,则这组数据的众数是1;

故答案为:1.【题目点拨】此题考查了众数的定义;熟记众数的定义是解决问题的关键.15、100(1+x)2=121【解题分析】

设平均每月增长的百分率是x,那么11月份的产品产量为100(1+x)万件,2月份的产品产量为100(1+x)(1+x),然后根据2月份的产品产量达到121万件即可列出方程,解方程即可.【题目详解】解:设平均每月增长的百分率是x,依题意得:100(1+x)2=121故答案为100(1+x)2=121【题目点拨】本题考查了利用一元二次方程解增长率问题.16、1【解题分析】

根据三角形中位线定理进行解答即可得.【题目详解】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC==1cm,故答案为1.【题目点拨】本题考查了三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17、1【解题分析】

想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.【题目详解】解:∵四边形AEFG是正方形,

∴∠AEF=90°,

∵∠CEF=15°,

∴∠AEB=180°-90°-15°=75°,

∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,

∵四边形ABCD是平行四边形,

∴∠D=∠B=1°

故答案为:1.【题目点拨】本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.18、(-2,-3).【解题分析】根据在平面直角坐标系中,关于x轴对称的两个点的横坐标相同,纵坐标相反即可得出答案.解:点A(-2,3)关于x轴对称的点B的坐标是(-2,-3).故答案为(-2,-3).三、解答题(共66分)19、x-3,【解题分析】

原式括号内先通分,再算减法,然后进行分式的乘法运算,再把x的值代入化简后的式子计算即可.【题目详解】解:原式=•=•=•=x-3;当x=3+时,原式=3+-3=.【题目点拨】本题考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.20、(1)A(﹣2,0),点B(0,1),D(2,﹣2);(2)y=﹣3x+1.【解题分析】

(1)由于ー次函数y=2x+1的图象与x、y轴分别相交于点A、B,所以利用函数解析式即可求出AB两点的坐标,然后过D作DH⊥x轴于H点,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AHD=90°,AB=AD,接着证明△ABO≌△DAH,最后利用全等三角形的性质可以得到DH=AO=2,AH=BO=1,从而求出点D的坐标;(2)利用待定系数法即可求解【题目详解】解:(1)∵当y=0时,2x+1=0,x=﹣2.∴点A(﹣2,0).∵当x=0时,y=1.∴点B(0,1).过D作DH⊥x轴于H点,∵四边形ABCD是正方形,∴∠BAD=∠AOB=∠AHD=90°,AB=AD.∴∠BAO+∠ABO=∠BAO+∠DAH,∴∠ABO=∠DAH.∴△ABO≌△DAH.∴DH=AO=2,AH=BO=1,∴OH=AH﹣AO=2.∴点D(2,﹣2).(2)设直线BD的表达式为y=kx+b.∴解得,∴直线BD的表达式为y=﹣3x+1.【题目点拨】此题考查一次函数综合题,利用全等三角形的性质是解题关键21、(1),1.2;(2)S=﹣10t+12(0.7≤t≤1.2);(3)0.95【解题分析】

(1)根据图象可知小明从起点匀速跑到饮料站用时0.7小时,根据“速度=路程÷时间”即可解答;(2)根据题意和函数图象中的数据可以求得小明从饮料站跑到终点的过程中S与t之间的函数表达式;(3)根据题意,可以列出关于a的不等式,从而可以求得a的取值范围,本题得以解决.【题目详解】解:(1)小明从起点匀速跑到饮料站的速度为:km/h,小明跑完全程所用时间为:(小时);故答案为:;1.2;(2)设明张从饮料站跑到终点的过程中S与t之间的函数表达式为S=kt+b,,解得,即小明从饮料站跑到终点的过程中S与t之间的函数表达式为S=﹣10t+12(0.7≤t≤1.2);(3)10﹣7.5=2.5,∴将S=2.5代入S=﹣10t+12,得2.5=﹣10t+12,得t=0.95,答:小明从起点跑到食品补给站所用的时间为0.95小时.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质和数形结合的思想解答.22、(1)的周长;(2)【解题分析】

(1)先利用直线、表达式求出点A、B、C坐标,再利用勾股定理求得AB、AC的长,即可求得的周长;(2)根据函数图象,即可得出.【题目详解】(1)由,当时,,所以点,由,当时,.所以点,,所以由,当时,,所以点,,根据勾股定理,得:,所以的周长(2)时在下方,即A点左侧区域,所以【题目点拨】本题考查利用一次函数图象与坐标轴交点求三角形面积问题,以及函数比较大小问题,熟练掌握求一次函数与x轴y轴交点是解题关键.23、(1)b=3m;(2)个单位长度;(3)P(0,3)或(2,2)【解题分析】

(1)易证△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得点D坐标,代入解析式可求m和b的数量关系;

(2)首先求出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;

(3)分两种情况讨论,由等腰直角三角形的性质可求点P坐标.【题目详解】解:(1)直线y=﹣x+b中,x=0时,y=b,所以,B(0,b),又C(m,0),所以,OB=b,OC=m,在和中∴点(2)∵m=1,∴b=3,点C(1,0),点D(4,1)∴直线AB解析式为:设直线BC解析式为:y=ax+3,且过(1,0)∴0=a+3∴a=-3∴直线BC的解析式为y=-3x+3,设直线B′C′的解析式为y=-3x+c,把D(4,1)代入得到c=13,∴直线B′C′的解析式为y=-3x+13,当y=3时,当y=0时,∴△BCD平移的距离是个单位.

(3)当∠PCD=90°,PC=CD时,点P与点B重合,

∴点P(0,3)

如图,当∠CPD=90°,PC=PD时,

∵BC=CD,∠BCD=90°,∠CPD=90°

∴BP=PD

∴点P是BD的中点,且点B(0,3),点D(4,1)

∴点P(2,2)

综上所述,点P为(0,3)或(2,2)时,以P、C、D为顶点的三角形是等腰直角三角形.【题目点拨】本题考查一次函数综合题、等腰直角三角形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移性质解决问题,属于中考压轴题.24、见解析.【解题分析】

先做线段a的垂直平分线,再过点A作l的垂线AO,O点为垂足,然后以点O为圆心,为半径画弧交l于B、C两点,则△ABC满足条件.【题目详解】如图所示,△ABC即为所求.【题目点拨】本题考查的知识点是作图—复杂作图,等腰三角形的性质,解题关键是熟记作图的步骤.25、(1)15、1.7h;(2)当0<≤0.5时,y与x的函数关系式为:y=-50x+25;当0.5<≤1.7时,y与x的函数关系式为:y=50x-25;(3)该海巡船能接受到该信号的时间0.6(h)【解题分析】试题分析:(1)把A到B、B到C间的距离相加即可得到A、C两个港口间的距离,再求出海巡船的速度,然后根据时间=路程÷速度,计算即可求出a值;(2)分0<x≤0.5和0.5<x≤1.7两段,利用待定系数法求一次函数解析式求解即可;(3)根据函数解析式求出距离为15km时的时间,然后相减即可得解.试题解析:解:(1)由图可知,A、B港口间的距离为25,B、C港口间的距离为60,所以,A、C港口间的距离为:25+60=15km,海巡船的速度为:25÷0.5=50km/h,∴a=15÷50=1.7h.故答案为:15,1.7h;(2)当0<x≤0.5时,设y与x的函数关系式为:y=kx+b,∵函数图象经过点(0,25),(0.5,0),∴,解得:.所以,y=﹣50x+25;当0.5<x≤1.7时,设y与x的函数关系式为:y=mx+n,∵函数图象经过点(0.5,0),(1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论