《第七章 随机变量及其分布》单元检测试卷(共四套)_第1页
《第七章 随机变量及其分布》单元检测试卷(共四套)_第2页
《第七章 随机变量及其分布》单元检测试卷(共四套)_第3页
《第七章 随机变量及其分布》单元检测试卷(共四套)_第4页
《第七章 随机变量及其分布》单元检测试卷(共四套)_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《第七章随机变量及其分布》单元检测试卷(一)一.选择题(共8小题)1.随机变量X的分布列如下:X﹣101Pabc其中a,b,c成等差数列,则P(|X|=1)=()A. B. C. D.2.随机变量X~B(100,p),且EX=20,则D(2X﹣1)=()A.64 B.128 C.256 D.323.袋中装有形状和大小完全相同的4个黑球,3个白球,从中不放回地依次随机摸取两球,在第一次摸到了黑球的条件下,第二次摸到白球的概率是()A. B. C. D.4.新冠肺炎病毒可以通过飞沫传染,佩戴口罩可以预防新冠肺炎病毒传染,已知A,B,C三人与新冠肺炎病人甲近距离接触,由于A,B,C三人都佩戴了某种类型的口罩,若佩戴了该种类型的口罩,近距离接触病人被感染的概率为,记A,B,C三人中被感染的人数为X,则X的数学期望EX=()A. B. C. D.5.田径比赛跳高项目中,在横杆高度设定后,运动员有三次试跳机会,只要有一次试跳成功即完成本轮比赛.在某学校运动会跳高决赛中,某跳高运动员成功越过现有高度即可成为本次比赛的冠军,结合平时训练数据,每次试跳他能成功越过这个高度的概率为0.8(每次试跳之间互不影响),则本次比赛他获得冠军的概率是()A.0.832 B.0.920 C.0.960 D.0.9926.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,已知某工厂生产口罩的质量指标ξ~N(15,0.0025),单位为g,该厂每天生产的质量在(14.9g,15.05g)的口罩数量为818600件,则可以估计该厂每天生产的质量在15.15g以上的口罩数量为()参考数据:若ξ~N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6827,P(μ﹣2σ<ξ<μ+2σ)=0.9545,P(μ﹣3σ<ξ<μ+3σ)=0.9973.A.158700 B.22750 C.2700 D.13507.已知随机变量ξ的分布列如表:ξx1x2x3PP1P2P3其中x2﹣x1=x3﹣x2>0.若E(ξ)>x2,则()A.P1>P2 B.P2<P3 C.P2>P3 D.P1<P38.从标有数字1,2,3,4,5的五张卡片中,依次抽出2张(取后不放回),则在第一次抽到卡片是偶数的情况下,第二次抽到卡片是奇数的概率为()A. B. C. D.二.多选题(共4小题)9.若随机变量X服从两点分布,其中,E(X)、D(X)分别为随机变量X均值与方差,则下列结论正确的是()A.P(X=1)=E(X) B.E(3X+2)=4C.D(3X+2)=4 D.10.如图所示的电路中,5只箱子表示保险匣分别为A,B,C,D,E.箱中所示数值表示通电时保险丝被切断的概率,下列结论正确的是()A.AB所在线路畅通的概率为B.ABC所在线路畅通的概率为C.DE所在线路畅通的概率为D.当开关合上时,整个电路畅通的概率为11.已知随机变量X服从正态分布N(100,102),则下列选项正确的是()(参考数值:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826),P(μ﹣2σ<ξ<μ+2σ)=0.9544,P(μ﹣3σ<ξ<μ+3σ)=0.9974)A.E(X)=100 B.D(X)=100C.P(X≥90)=0.8413 D.P(X≤120)=0.998712.甲、乙两人练习射击,命中目标的概率分别为和,甲、乙两人各射击一次,下列说法正确的是()A.目标恰好被命中一次的概率为B.目标恰好被命中两次的概率为C.目标被命中的概率为D.目标被命中的概率为1三.填空题(共4小题)13.某商场举办购物抽奖活动,凡当日购物满1000元的顾客,可参加抽奖,规则如下:盒中有大小质地均相同5个球,其中2个红球和3个白球,不放回地依次摸出2个球,若在第一次和第二次均摸到红球则获得特等奖,否则获得纪念奖,则顾客获得特等奖的概率是.14.排球比赛实行“五局三胜制”,某次比赛中,中国女排和M国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为,M国女排获胜的概率为,则中国女排在先输一局的情况下最终获胜的概率为.15.世卫组织就新型冠状病毒感染的肺炎疫情称,新型病毒可能造成“持续人传人”.通俗点说就是存在A传B,B又传C,C又传D,这就是“持续人传人”.那么A、B、C就会被称为第一代、第二代、第三代传播者.假设一个身体健康的人被被第一代、第二代、第三代传播者感染的概率分别为0.95,0.9,0.85,健康的小明参加了一次多人宴会,事后知道,参加宴会的人有5名第一代传播者,3名第二代传播者,2名第三代传播者,试计算,小明参加聚会,仅和感染的10个人其中一个接触,感染的概率有多大.16.在人类与大自然的较量中,经常面对影响人类生存、反复无常的天气变化.人类对天气变化经历了漫长的认识过程,积累了丰富的气象经验,三国时期,孙刘联军运用气象观测经验,预报出会有一场大雾出现,并在大雾的掩护下,演出了一场“草船借箭”的好戏,令世人惊叹.小明计划8月份去上海游览,受台风“利马奇”的影响,上海市8月份一天中发生雷雨天气的概率上升为0.8,那么小明在上海游览的3天中,只有1天不发生雷雨天气的概率约为四.解答题(共5小题)17.某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.18.唐代饼茶的制作一直延续至今,它的制作由“炙”、“碾”、“罗”三道工序组成:根据分析甲、乙、丙三位学徒通过“炙”这道工序的概率分别是0.5,0.6,0.5;能通过“碾”这道工序的概率分别是0.8,0.5,0.4;由于他们平时学习刻苦,都能通过“罗”这道工序;若这三道工序之间通过与否没有影响,(Ⅰ)求甲、乙、丙三位同学中恰好有一人通过“炙”这道工序的概率;(Ⅱ)设只要通过三道工序就可以制成饼茶,求甲、乙、丙三位同学中制成饼茶人数X的分布列.19.甲、乙两位运动员一起参加赛前培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:8281797895889384乙:8685798684848591(Ⅰ)请你运用茎叶图表示这两组数据;(Ⅱ)若用甲8次成绩中高于85分的频率估计概率,对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于85分的次数为ξ,求ξ的分布列及数学期望Eξ;(Ⅲ)现要从中选派一人参加正式比赛,依据所抽取的两组数据分析,你认为选派哪位选手参加较为合适?并说明理由.20.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.(I)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,该企业可获利润有哪几种可能,其利润及概率各为多少?21.新型冠状病毒最近在全国蔓延,具有很强的人与人之间的传染性,该病毒在进入人体后一般有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间.假设每位病毒携带者在潜伏期内每天有n位密切接触者,接触病毒携带者后被感染的概率为p,每位密切接触者不用再接触其他病毒携带者.(1)求一位病毒携带者一天内感染的人数X的均值;(2)若n=3,时,从被感染的第一天算起,试计算某一位病毒携带者在14天潜伏期内,被他平均累计感染的人数(用数字作答);(3)3月16日20时18分,由我国军事科学院军事科学研究院陈薇院士领衔的科学团队,研制重组新型冠状病毒疫苗获批进入临床状态,新疫苗的使用,可以极大减少感染新型冠状病毒的人数,为保证安全性和有效性,某科研团队抽取500支新冠疫苗,观测其中某项质量指标值,得到如图频率分布直方图:①求这500支该项质量指标值得样本平均值(同一组的数据用该组区代表间的中点值);②由直方图可以认为,新冠疫苗的该项质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2,经计算可得这500支新冠疫苗该项指标值的样本方差s2=150.现有5名志愿者参与临床试验,观测得出该项指标值分别为:206,178,195,160,229试问新冠疫苗的该项指标值是否正常,为什么?参考数据:,若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6827P(μ﹣2σ<Z<μ+2σ)=0.9545,P(μ﹣3σ<Z<μ+3σ)=0.9973.答案解析一.选择题(共8小题)1.随机变量X的分布列如下:X﹣101Pabc其中a,b,c成等差数列,则P(|X|=1)=()A. B. C. D.【解答】解:∵随机变量X的分布列如下:X﹣101Pabc∴a+b+c=1,且a,b,c∈[0,1].①∵a,b,c成等差数列,∴2b=a+c,②联立①②,得b,a+c,∴P(|x|=1)=P(X=﹣1)+P(X=1)=a+c.故选:D.2.随机变量X~B(100,p),且EX=20,则D(2X﹣1)=()A.64 B.128 C.256 D.32【解答】解:由于X~B(100,p),且EX=20,则100p=20,得p=0.2,D(X)=100p(1﹣p)=20×(1﹣0.2)=16,D(2X﹣1)=22D(X)=64.故选:A.3.袋中装有形状和大小完全相同的4个黑球,3个白球,从中不放回地依次随机摸取两球,在第一次摸到了黑球的条件下,第二次摸到白球的概率是()A. B. C. D.【解答】解:在这两次摸球过程中,设A=“第一次摸到黑球”,B=“第二次摸到白球”.则n(A),,所以P(B|A).故选:C.4.新冠肺炎病毒可以通过飞沫传染,佩戴口罩可以预防新冠肺炎病毒传染,已知A,B,C三人与新冠肺炎病人甲近距离接触,由于A,B,C三人都佩戴了某种类型的口罩,若佩戴了该种类型的口罩,近距离接触病人被感染的概率为,记A,B,C三人中被感染的人数为X,则X的数学期望EX=()A. B. C. D.【解答】解:由题意A,B,C三人与新冠肺炎病人甲近距离接触,由于A,B,C三人都佩戴了某种类型的口罩,若佩戴了该种类型的口罩,近距离接触病人被感染的概率为,所以,A,B,C三人中被感染的人数为X,满足,所以,故选:B.5.田径比赛跳高项目中,在横杆高度设定后,运动员有三次试跳机会,只要有一次试跳成功即完成本轮比赛.在某学校运动会跳高决赛中,某跳高运动员成功越过现有高度即可成为本次比赛的冠军,结合平时训练数据,每次试跳他能成功越过这个高度的概率为0.8(每次试跳之间互不影响),则本次比赛他获得冠军的概率是()A.0.832 B.0.920 C.0.960 D.0.992【解答】解:每次试跳他能成功越过这个高度的概率为0.8,则本次比赛他获得冠军的概率P=0.8+0.2×0.8+0.22×0.8=0.8+0.16+0.032=0.992故选:D.6.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,已知某工厂生产口罩的质量指标ξ~N(15,0.0025),单位为g,该厂每天生产的质量在(14.9g,15.05g)的口罩数量为818600件,则可以估计该厂每天生产的质量在15.15g以上的口罩数量为()参考数据:若ξ~N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6827,P(μ﹣2σ<ξ<μ+2σ)=0.9545,P(μ﹣3σ<ξ<μ+3σ)=0.9973.A.158700 B.22750 C.2700 D.1350【解答】解:由题意知,ξ~N(15,0.0025),即μ=15,σ2=0.0025,即σ=0.05;所以P(14.9<ξ<15.05)=P(μ﹣2σ<ξ<μ+σ)0.8186,所以该厂每天生产的口罩总量为818600÷0.8186=1000000(件),又P(ξ>15.15)=P(ξ>μ+3σ),所以估计该厂每天生产的质量在15.15g以上的口罩数量为10000001350(件).故选:D.7.已知随机变量ξ的分布列如表:ξx1x2x3PP1P2P3其中x2﹣x1=x3﹣x2>0.若E(ξ)>x2,则()A.P1>P2 B.P2<P3 C.P2>P3 D.P1<P3【解答】解:不妨设x1=1,x2=2,x3=3,则E(ξ)=P1+2P2+3P3>2,∵P1+P2+P3=1,∴P3=1﹣P1﹣P2,∴P1+2P2+3(1﹣P1﹣P2)>2,∴2P1+P2<1,∴P1<1﹣P1﹣P2,即P1<P3.故选:D.8.从标有数字1,2,3,4,5的五张卡片中,依次抽出2张(取后不放回),则在第一次抽到卡片是偶数的情况下,第二次抽到卡片是奇数的概率为()A. B. C. D.【解答】解:依次抽出2张(取后不放回),第一次抽到卡片是偶数的取法数:8;第一次是偶数,第二次是奇数的取法数:.故所求的概率为P.故选:C.二.多选题(共4小题)9.若随机变量X服从两点分布,其中,E(X)、D(X)分别为随机变量X均值与方差,则下列结论正确的是()A.P(X=1)=E(X) B.E(3X+2)=4C.D(3X+2)=4 D.【解答】解:随机变量X服从两点分布,其中,∴P(X=1),E(X),D(X)=(0)2(1)2,在A中,P(X=1)=E(X),故A正确;在B中,E(3X+2)=3E(X)+2=34,故B正确;在C中,D(3X+2)=9D(X)=92,故C错误;在D中,D(X),故D错误.故选:AB.10.如图所示的电路中,5只箱子表示保险匣分别为A,B,C,D,E.箱中所示数值表示通电时保险丝被切断的概率,下列结论正确的是()A.AB所在线路畅通的概率为B.ABC所在线路畅通的概率为C.DE所在线路畅通的概率为D.当开关合上时,整个电路畅通的概率为【解答】解:由题意知,,,,,,所以A,B两个盒子畅通的概率为,因此A错误;D,E两个盒子并联后畅通的概率为,因此C错误;A,B,C三个盘子混联后畅通的概率为,B正确;根据上述分析可知,当开关合上时,电路畅通的概率为,D正确.故选:BD.11.已知随机变量X服从正态分布N(100,102),则下列选项正确的是()(参考数值:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826),P(μ﹣2σ<ξ<μ+2σ)=0.9544,P(μ﹣3σ<ξ<μ+3σ)=0.9974)A.E(X)=100 B.D(X)=100C.P(X≥90)=0.8413 D.P(X≤120)=0.9987【解答】解:∵随机变量X服从正太分布N(100,102),∴曲线关于x=100对称,根据题意可得,P(90<x<110)=0.6826,P(80<x<120)=0.9544,∴P(x≥90)=0.50.8413,故C正确;P(x≤120)=0.5.,故D错误.而A,B都正确.故选:ABC.12.甲、乙两人练习射击,命中目标的概率分别为和,甲、乙两人各射击一次,下列说法正确的是()A.目标恰好被命中一次的概率为B.目标恰好被命中两次的概率为C.目标被命中的概率为D.目标被命中的概率为1【解答】解:甲、乙两人练习射击,命中目标的概率分别为和,甲、乙两人各射击一次,在A中,目标恰好被命中一次的概率为P,故A错误;在B中,由相互独立事件概率乘法公式得:目标恰好被命中两次的概率为,故B正确;在C中,目标被命中的概率为P=1﹣(1)(1),故C错误;在D中,目标被命中的概率为P=1﹣(1)(1),故D正确.故选:BD.三.填空题(共4小题)13.某商场举办购物抽奖活动,凡当日购物满1000元的顾客,可参加抽奖,规则如下:盒中有大小质地均相同5个球,其中2个红球和3个白球,不放回地依次摸出2个球,若在第一次和第二次均摸到红球则获得特等奖,否则获得纪念奖,则顾客获得特等奖的概率是.【解答】解:设2个红球分别为A,B,3个白球分别为a,b,c,不放回地依次摸出2个球,基本事件总数有10个,分别为:(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),第一次和第二次均摸到红球包含的基本事件只有(A,B),则顾客获得特等奖的概率是P.故答案为:.14.排球比赛实行“五局三胜制”,某次比赛中,中国女排和M国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为,M国女排获胜的概率为,则中国女排在先输一局的情况下最终获胜的概率为.【解答】解:排球比赛实行“五局三胜制”,某次比赛中,中国女排和M国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为,M国女排获胜的概率为,中国女排在先输一局的情况下最终获胜包含两种结果:①中国女排在先输一局的情况下,第二、三、四局连胜三局;②中国女排在先输一局的情况下,第二、三、四局两胜一负,第五局中国女排胜,则中国女排在先输一局的情况下最终获胜的概率为:P=()3.故答案为:.15.世卫组织就新型冠状病毒感染的肺炎疫情称,新型病毒可能造成“持续人传人”.通俗点说就是存在A传B,B又传C,C又传D,这就是“持续人传人”.那么A、B、C就会被称为第一代、第二代、第三代传播者.假设一个身体健康的人被被第一代、第二代、第三代传播者感染的概率分别为0.95,0.9,0.85,健康的小明参加了一次多人宴会,事后知道,参加宴会的人有5名第一代传播者,3名第二代传播者,2名第三代传播者,试计算,小明参加聚会,仅和感染的10个人其中一个接触,感染的概率有多大0.915.【解答】解:设事件A,B,C为和第一代、第二代、第三代传播者接触,事件D为小明被感染,则由已知得:p(A)=0.5,p(B)=0.3,p(C)=0.2,p(D|A)=0.95,p(D|B)=0.90,p(D|C)=0.85,则p(D)=p(D|A)p(A)+p(D|B)p(B)+p(D|C)p(C)=0.95×0.5+0.90×0.3+0.85×0.2=0.915,故答案为:0.91516.在人类与大自然的较量中,经常面对影响人类生存、反复无常的天气变化.人类对天气变化经历了漫长的认识过程,积累了丰富的气象经验,三国时期,孙刘联军运用气象观测经验,预报出会有一场大雾出现,并在大雾的掩护下,演出了一场“草船借箭”的好戏,令世人惊叹.小明计划8月份去上海游览,受台风“利马奇”的影响,上海市8月份一天中发生雷雨天气的概率上升为0.8,那么小明在上海游览的3天中,只有1天不发生雷雨天气的概率约为0.384【解答】解:小明计划8月份去上海游览,受台风“利马奇”的影响,上海市8月份一天中发生雷雨天气的概率上升为0.8,则小明在上海游览的3天中,只有1天不发生雷雨天气的概率约为:P0.384.故答案为:0.384.四.解答题(共5小题)17.某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.【解答】解:(1)从6名成员中挑选2名成员,共有15种情况,记“男生甲被选中”为事件A,事件A所包含的基本事件数为5种,故.(2)记“男生甲被选中”为事件A,“女生乙被选中”为事件B,则,由(1)知,故.(3)记“挑选的2人一男一女”为事件C,则,“女生乙被选中”为事件B,,故.18.唐代饼茶的制作一直延续至今,它的制作由“炙”、“碾”、“罗”三道工序组成:根据分析甲、乙、丙三位学徒通过“炙”这道工序的概率分别是0.5,0.6,0.5;能通过“碾”这道工序的概率分别是0.8,0.5,0.4;由于他们平时学习刻苦,都能通过“罗”这道工序;若这三道工序之间通过与否没有影响,(Ⅰ)求甲、乙、丙三位同学中恰好有一人通过“炙”这道工序的概率;(Ⅱ)设只要通过三道工序就可以制成饼茶,求甲、乙、丙三位同学中制成饼茶人数X的分布列.【解答】解:(I)设A,B,C分别表示事件“甲、乙、丙通过“炙”这道工序”,则所求概率0.5×(1﹣0.6)×(1﹣0.5)+(1﹣0.5)×0.6×(1﹣0.5)+(1﹣0.5)×(1﹣0.6)×0.5=0.35(Ⅱ)甲制成饼茶的概率为P甲=0.5×0.8=0.4,同理P乙=0.6×0.5=0.3,P丙=0.5×0.4=0.2.随机变量X的可能取值为0,1,2,3,P(X=0)=(1﹣0.4)×(1﹣0.3)×(1﹣0.2)=0.336,P(X=1)=0.4×(1﹣0.3)×(1﹣0.2)+(1﹣0.4)×(1﹣0.3)×0.2+(1﹣0.4)×0.3×(1﹣0.2)=0.452,P(X=2)=0.4×0.3×(1﹣0.2)+0.4×(1﹣0.3)×0.2+(1﹣0.4)×0.3×0.2=0.188,P(X=3)=0.4×0.3×0.2=0.024.故X的分布列为X0123P0.3360.4520.1880.02419.甲、乙两位运动员一起参加赛前培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:8281797895889384乙:8685798684848591(Ⅰ)请你运用茎叶图表示这两组数据;(Ⅱ)若用甲8次成绩中高于85分的频率估计概率,对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于85分的次数为ξ,求ξ的分布列及数学期望Eξ;(Ⅲ)现要从中选派一人参加正式比赛,依据所抽取的两组数据分析,你认为选派哪位选手参加较为合适?并说明理由.【解答】解:(Ⅰ)画出的茎叶图如下所示,(Ⅱ)甲8次成绩中高于85分的有3次,用频率估计概率,∴甲的成绩高于85分的概率为,ξ的可能取值为0,1,2,3,且ξ~B(3,),P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3).∴ξ的分布列为ξ0123P数学期望E(ξ).(Ⅲ)甲的成绩的平均数为,乙的成绩的平均数为,∴两位选手的成绩的平均数相等,但从茎叶图可知,乙的方差比甲的方差小,即乙选手的成绩更稳定,故选派乙选手参加较为合适.20.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.(I)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,该企业可获利润有哪几种可能,其利润及概率各为多少?【解答】解:(I)设事件A表示“甲组研发新产品A研发成功”,设事件B表示“乙组研发新新产品B研发成功”,则P(A),P(B),∴至少有一种新产品研发成功的概率:P=1﹣P()P()=1.(Ⅱ)若新产品A研发成功,预计企业可获利润120万元,若新产品B研发成功,预计企业可获利润100万元,该企业可获利润X的可能取值为0,100,120,220,P(X=0)=P(),P(X=100)=P(),P(X=120)=P(A),P(X=220)=P(AB).21.新型冠状病毒最近在全国蔓延,具有很强的人与人之间的传染性,该病毒在进入人体后一般有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间.假设每位病毒携带者在潜伏期内每天有n位密切接触者,接触病毒携带者后被感染的概率为p,每位密切接触者不用再接触其他病毒携带者.(1)求一位病毒携带者一天内感染的人数X的均值;(2)若n=3,时,从被感染的第一天算起,试计算某一位病毒携带者在14天潜伏期内,被他平均累计感染的人数(用数字作答);(3)3月16日20时18分,由我国军事科学院军事科学研究院陈薇院士领衔的科学团队,研制重组新型冠状病毒疫苗获批进入临床状态,新疫苗的使用,可以极大减少感染新型冠状病毒的人数,为保证安全性和有效性,某科研团队抽取500支新冠疫苗,观测其中某项质量指标值,得到如图频率分布直方图:①求这500支该项质量指标值得样本平均值(同一组的数据用该组区代表间的中点值);②由直方图可以认为,新冠疫苗的该项质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2,经计算可得这500支新冠疫苗该项指标值的样本方差s2=150.现有5名志愿者参与临床试验,观测得出该项指标值分别为:206,178,195,160,229试问新冠疫苗的该项指标值是否正常,为什么?参考数据:,若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6827P(μ﹣2σ<Z<μ+2σ)=0.9545,P(μ﹣3σ<Z<μ+3σ)=0.9973.【解答】解:(1)依题意可知X~B(n,p),则E(X)=np,故一天内被感染人数X的均值为np;(2)不妨记前m天平均累计感染的人数为am,则a1=1,a2=1+np,,…,.当n=3,时,一位病毒携带者在14天潜伏期内,被他平均累计感染的人数为:a14;(3)①由频率分布直方图得,这500支该项指标值的样本平均值为:;②新冠肺炎该项指标值不正常,理由如下:由题意知Z~N(200,150),P(μ﹣3σ<Z<μ+3σ)=P(163.4<Z<236.6)=0.9973,即该项指标落在(163.4,236.6)之外的概率为0.0027,是小概率事件.而160∉(163.4,236.6),根据3σ原则,新冠肺炎的该项指标值不正常.《第七章随机变量及其分布》单元检测试卷(二)一.选择题(共8小题)1.抛掷甲、乙两颗骰子,若事件A:“甲骰子的点数大于3”;事件B:“甲、乙两骰子的点数之和等于7”,则P(B|A)的值等于()A. B. C. D.2.设,随机变量X的分布列是:X﹣101Pa则当a在内增大时()A.D(X)增大 B.D(X)减小C.D(X)先增大后减小 D.D(X)先减小后增大3.抛掷一枚质地均匀的硬币,若出现正面朝上则停止抛掷,至多抛掷ni次,设抛掷次数为随机变量ξi,i=1,2.若n1=3,n2=5,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)4.十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龙)、巳(蛇)、午(马)、未(羊)、申(猴)、酉(鸡)、戌(狗)、亥(猪),每一个人的出生年份对应了十二种动物中的一种,即自己的属相.现有印着十二生肖图案的毛绒蛙娃各一个,小张同学的属相为马,小李同学的属相为羊,现在这两位同学从这十二个毛绒娃娃中各随机取一个(不放回),则这两位同学都拿到自己属相的毛绒娃娃的概率是()A. B. C. D.5.设一个正三棱柱ABC﹣DEF,每条棱长都相等,一只蚂蚁从上底面ABC的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为P10,则P10为()A. B.C. D.6.已知某市居民在2019年用于手机支付的个人消费额ξ(单位:元)服从正态分布N(2000,1002),则该市某居民手机支付的消费额在(1900,2200)内的概率为()附:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ<μ+2σ)=0.9544,P(μ﹣3σ<ξ<μ+3σ)=0.9974.A.0.9759 B.0.84 C.0.8185 D.0.47727.随机变量ξ有四个不同的取值,且其分布列如下:ξ2sinαsinβ3cosαsinβ3sinαcosβcosαcosβPt则E(ξ)的最大值为()A.﹣1 B. C. D.18.2020年初,新冠病毒肺炎(COVID﹣19)疫情在武汉爆发,并以极快的速度在全国传播开来.因该病毒暂无临床特效药可用,因此防控难度极大.湖北某地防疫防控部门决定进行全面入户排查4类人员:新冠患者、疑似患者、普通感冒发热者和新冠密切接触者,过程中排查到一户5口之家被确认为新冠肺炎密切接触者,按要求进一步对该5名成员逐一进行核糖核酸检测,若出现阳性,则该家庭定义为“感染高危户”,设该家庭每个成员检测呈阳性的概率相同均为p(0<p<1),且相互独立,该家庭至少检测了4人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,此时p0=()A. B. C. D.二.多选题(共4小题)9.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是()A.B.C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件10.“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献;某杂交水稻种植研究所调查某地水稻的株高,得出株高(单位:cm)服从正态分布,其密度曲线函数为,则下列说法正确的是()A.该地水稻的平均株高为100cmB.该地水稻株高的方差为10C.随机测量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大D.随机测量一株水稻,其株高在(80,90)和在(100,110)(单位:cm)的概率一样大11.若随机变量ξ~N(0,1),φ(x)=P(ξ≤x),其中x>0,下列等式成立有()A.φ(﹣x)=1﹣φ(x) B.φ(2x)=2φ(x)C.P(|ξ|<x)=2φ(x)﹣1 D.P(|ξ|>x)=2﹣φ(x)12.我国已成为名副其实的工业大国.据统计,在500多种主要工业品中,我国有220多种产品产量居全球第一位,工业化的大规模推进也消耗了大量的资源和能源.为加快推进工业节能与绿色发展,工业和信息化部及国家开发银行联合发布了《关于加快推进工业节能与绿色发展的通知》,大力支持工业节能降耗、降本增效,实现绿色发展.如表是某国企利用新科技进行节能降耗技术改造后连续五年的生产利润统计表:年份20142015201620172018年份代码x12345年生产利润y(单位:千万元)0.70.811.11.4则下列说法正确的是()(参考公式及数据::;,(xi)(yi)=1.7,n10)A.这五年生产利润的方差为0.06B.每年的年生产利润比前一年大约增长0.49千万元C.预测2020年该国企的年生产利润为1.68千万元D.要使年生产利润突破2千万元,至少要等到2022年三.填空题(共4小题)13.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P(ξ=0)=,E(ξ)=.14.将4瓶外观相同,品质不同的酒让品酒师品尝,要求按品质优劣将4种酒排序,经过一段时间后,再让其品尝这4瓶酒,并让他重新按品质优劣将4种酒排序.根据测试中两次排序的偏离程度评估品酒师的能力.a1,a2,a3,a4,表示第一次排序为1,2,3,4的四种酒分別在第二次排序中的序号,记X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|为其偏离程度,假设a1,a2,a3,a4为1,2,3,4的等可能的各种排列,假设每轮测试之间互不影响,p1表示在1轮测试中X≤2的概率,p2表示在前3轮测试中恰好有一轮X≤2的概率,则p2=.15.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,1002),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1100小时的概率为(附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣σ<Z<μ+σ))16.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单.某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,……,r,其中r≥3),约定:每天他首先从1号外卖店取单,叫做第1次取单,之后,他等可能的前往其余r﹣1个外卖店中的任何一个店取单叫做第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的r﹣1个外卖店取单.设事件Ak={第k次取单恰好是从1号店取单},P(Ak)是事件Ak发生的概率,显然P(A1)=1,P(A2)=0,则P(A3)=,P(Ak+1)与P(Ak)的关系式为.(k∈N*)四.解答题(共5小题)17.在2019年女排世界杯比赛中,甲队以3:1力克主要竞争对手乙队,取得了一场关键性的胜利.排球比赛按“五局三胜制的规则进行(即先胜三局的一方获胜,比赛结束),且各局之间互不影响.根据两队以往的交战成绩分析,乙队在前四局的比赛中每局获胜的概率是,但前四局打成2:2的情况下,在第五局中甲队凭借过硬的心理素质,获胜的概率为.若甲队与乙队下次在比赛上相遇.(1)求甲队以3:1获胜的概率;(2)设甲的净胜局数(例如:甲队以3:1获胜,则甲队的净胜局数为2,乙队的净胜局数为﹣2)为ξ,求ξ的分布列及Eξ.18.某项数学竞赛考试共四道题,考察内容分别为代数、几何、数论、组合,已知前两题每题满分40分,后两题每题满分60分,题目难度随题号依次递增,已知学生甲答题时,若该题会做则必得满分,若该题不会做则不作答得0分,通过对学生甲以往测试情况的统计,得到他在同类模拟考试中各题的得分率,如表所示:代数几何数论组合第1题0.60.80.70.7第2题0.50.70.70.6第3题0.40.50.50.3第4题0.20.30.30.2假设学生甲每次考试各题的得分相互独立.(1)若此项竞赛考试四道题的顺序依次为代数、几何、数论、组合,试预测学生甲考试得160分的概率;(2)学生甲研究该项竞赛近五年的试题发现第1题都是代数题,于是他在赛前针对代数版块进行了强化训练,并取得了很大进步,现在,只要代数题是在试卷第1、2题的位置,他就一定能答对,若今年该项数学竞赛考试四道题的顺序依次为代数、数论、组合、几何,试求学生甲此次考试得分X的分布列.19.“过大年,吃水饺”是我国不少地方过春节的一大习俗,2020年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(38.45,50.4)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望及方差.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若Z~N(μ,σ2),则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544.20.时至21世纪.环境污染已经成为世界各国面临的一大难题,其中大气污染是目前城市急需应对的一项课题.某市号召市民尽量减少开车出行以绿色低碳的出行方式支持节能减排.原来天天开车上班的王先生积极响应政府号召,准备每天从骑自行车和开小车两种出行方式中随机选择一种方式出行.从即日起出行方式选择规则如下:第一天选择骑自行车方式上班,随后每天用“一次性抛掷6枚均匀硬币”的方法确定出行方式,若得到的正面朝上的枚数小于4,则该天出行方式与前一天相同,否则选择另一种出行方式.(1)求王先生前三天骑自行车上班的天数X的分布列;(2)由条件概率我们可以得到概率论中一个很重要公式﹣﹣全概率公式.其特殊情况如下:如果事件A1A2相互对立并且P(Ai)>0(i=1,2),则对任一事件B有P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)=P(A1B)+P(A2B).设Pn(n∈N*)表示事件“第n天王先生上班选择的是骑自行车出行方式”的概率.(i)用pn﹣1表示pn(n≥2);(ii)王先生的这种选择随机选择出行方式有没有积极响应该市政府的号召,请说明理由.21.某高校的大一学生在军训结束前,需要进行各项过关测试,其中射击过关测试规定:每位测试的大学生最多有两次射击机会,第一次射击击中靶标,立即停止射击,射击测试过关,得5分;第一次未击中靶标,继续进行第二次射击,若击中靶标,立即停止射击,射击测试过关,得4分;若未击中靶标,射击测试未能过关,得2分.现有一个班组的12位大学生进行射击过关测试,假设每位大学生两次射击击中靶标的概率分别为m,0.5,每位大学生射击测试过关的概率为p.(1)求p(用m表示);(2)设该班组中恰有9人通过射击过关测试的概率为f(p),求f(p)取最大值时p和m的值;(3)在(2)的结果下,求该班组通过射击过关测试所得总分的平均数.答案解析一.选择题(共8小题)1.抛掷甲、乙两颗骰子,若事件A:“甲骰子的点数大于3”;事件B:“甲、乙两骰子的点数之和等于7”,则P(B|A)的值等于()A. B. C. D.【解答】解:由题意可得:事件A:“甲骰子的点数大于3”包含点数为4,5,6三种情况,所以为P(A),又事件B:“甲、乙两骰子的点数之和等于7”,所以,事件A与事件B都发生所包含的情况有(4,3),(5,2),(6,1),共3个基本事件;而抛掷甲、乙两颗骰子,共有36种情况,所以事件A与事件B都发生的概率为P(AB),故P(B|A).故选:B.2.设,随机变量X的分布列是:X﹣101Pa则当a在内增大时()A.D(X)增大 B.D(X)减小C.D(X)先增大后减小 D.D(X)先减小后增大【解答】解:根据随机变量的分布列E(ξ)=(﹣1)•a+0•(a)+1a,则D(ξ)由于函数的图象为开口方向向下的抛物线,且0<a,函数的对称轴为x,故D(X)增大.故选:A.3.抛掷一枚质地均匀的硬币,若出现正面朝上则停止抛掷,至多抛掷ni次,设抛掷次数为随机变量ξi,i=1,2.若n1=3,n2=5,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【解答】解:抛掷一枚质地均匀的硬币,出现正面朝上则停止抛掷,至多抛掷ni次,设抛掷次数为随机变量ξi,i=1,2.n2=5,∵n1=3,∴ξ1的分布列为:ξ1123PEξ1,Dξ1=(1)2(2)2(3)2.∵n2=5,∴ξ2的分布列为:ξ212345PEξ2,Dξ2=(1)2(2)2(3)2(4)2(5)2,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.4.十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龙)、巳(蛇)、午(马)、未(羊)、申(猴)、酉(鸡)、戌(狗)、亥(猪),每一个人的出生年份对应了十二种动物中的一种,即自己的属相.现有印着十二生肖图案的毛绒蛙娃各一个,小张同学的属相为马,小李同学的属相为羊,现在这两位同学从这十二个毛绒娃娃中各随机取一个(不放回),则这两位同学都拿到自己属相的毛绒娃娃的概率是()A. B. C. D.【解答】解:十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龙)、巳(蛇)、午(马)、未(羊)、申(猴)、酉(鸡)、戌(狗)、亥(猪),每一个人的出生年份对应了十二种动物中的一种,即自己的属相.现有印着十二生肖图案的毛绒蛙娃各一个,小张同学的属相为马,小李同学的属相为羊,现在这两位同学从这十二个毛绒娃娃中各随机取一个(不放回),基本事件总数n=12×11=132,这两位同学都拿到自己属相的毛绒娃娃包含的基本事件个数m=1×1=1,则这两位同学都拿到自己属相的毛绒娃娃的概率p.故选:B.5.设一个正三棱柱ABC﹣DEF,每条棱长都相等,一只蚂蚁从上底面ABC的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为P10,则P10为()A. B.C. D.【解答】解:设蚂蚁爬n次仍在上底面的概率为Pn,那么它前一步只有两种情况:A:如果本来就在上底面,再走一步要想不掉下去,只有两条路,其概率是Pn﹣1;B:如果是上一步在下底面,则第n﹣1步不再上底面的概率是1﹣Pn﹣1,如果爬上来,其概率应是(1﹣Pn﹣1).A,B事件互斥,因此,PnPn﹣1(1﹣Pn﹣1);整理得,PnPn﹣1;即Pn(Pn﹣1);构造等比数列{Pn},公比为,首项为P1,可得Pn()n.因此第10次仍然在上底面的概率P10()10.故选:D.6.已知某市居民在2019年用于手机支付的个人消费额ξ(单位:元)服从正态分布N(2000,1002),则该市某居民手机支付的消费额在(1900,2200)内的概率为()附:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ<μ+2σ)=0.9544,P(μ﹣3σ<ξ<μ+3σ)=0.9974.A.0.9759 B.0.84 C.0.8185 D.0.4772【解答】解:∵ξ服从正态分布N(2000,1002),∴μ=2000,σ=100,则P(1900<ξ<2200)=P(μ﹣σ<ξ<μ+σ)[P(μ﹣2σ<ξ<μ+2σ)﹣P(μ﹣σ<ξ<μ+σ)]=0.6826(0.9544﹣0.6826)=0.8185.故选:C.7.随机变量ξ有四个不同的取值,且其分布列如下:ξ2sinαsinβ3cosαsinβ3sinαcosβcosαcosβPt则E(ξ)的最大值为()A.﹣1 B. C. D.1【解答】解:依题意,t=1,所以E(ξ)(2sinαsinβ+3cosαsinβ+3sinαcosβ)cosαcosβ(cosαsinβ+sinαcosβ)(sinαsinβ+cosαcosβ)sin(α+β)cos(α﹣β),所以当α+β,α﹣β=2kπ,(k∈z)时,即(k∈Z)时,E(ξ)取得最大值1.故选:D.8.2020年初,新冠病毒肺炎(COVID﹣19)疫情在武汉爆发,并以极快的速度在全国传播开来.因该病毒暂无临床特效药可用,因此防控难度极大.湖北某地防疫防控部门决定进行全面入户排查4类人员:新冠患者、疑似患者、普通感冒发热者和新冠密切接触者,过程中排查到一户5口之家被确认为新冠肺炎密切接触者,按要求进一步对该5名成员逐一进行核糖核酸检测,若出现阳性,则该家庭定义为“感染高危户”,设该家庭每个成员检测呈阳性的概率相同均为p(0<p<1),且相互独立,该家庭至少检测了4人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,此时p0=()A. B. C. D.【解答】解:根据相互独立事件同时发生的概率公式得:f(p)=(1﹣p)3p+(1﹣p)4p,∴f′(p)=﹣3(1﹣p)2p+(1﹣p)3﹣4(1﹣p)3p+(1﹣p)4=(1﹣p)2(5p2﹣10p+2)=(1﹣p)(p)(p),∵0≤p≤1,当p=p0时,f(p)最大,∴p01.故选:A.二.多选题(共4小题)9.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是()A.B.C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件【解答】解:易见A1,A2,A3是两两互斥的事件,.故选:BD.10.“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献;某杂交水稻种植研究所调查某地水稻的株高,得出株高(单位:cm)服从正态分布,其密度曲线函数为,则下列说法正确的是()A.该地水稻的平均株高为100cmB.该地水稻株高的方差为10C.随机测量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大D.随机测量一株水稻,其株高在(80,90)和在(100,110)(单位:cm)的概率一样大【解答】解:由正态分布密度曲线函数为,得μ=100,σ=10.∴该地水稻的平均株高为E(X)=100cm,故A正确;该地水稻株高的标准差σ=10,方差为100,故B错误;∵P(X>120)[1﹣P(μ﹣2σ<X<μ+2σ)](1﹣0.9544)=0.0228,P(X<70)[1﹣P(μ﹣3σ<X<μ+3σ)](1﹣0.9974)=0.0013,∴随机测量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大,故C正确;P(80<X<90)[P(μ﹣2σ<X<μ+2σ)﹣P(μ﹣σ<X<μ+σ)](0.9544﹣0.6826)=0.1359,P(100<X<110)[P(μ﹣σ<X<μ+σ)]0.6826=0.3413.∴随机测量一株水稻,其株高在(80,90)和在(100,110)(单位:cm)的概率不一样大,故D错误.故选:AC.11.若随机变量ξ~N(0,1),φ(x)=P(ξ≤x),其中x>0,下列等式成立有()A.φ(﹣x)=1﹣φ(x) B.φ(2x)=2φ(x)C.P(|ξ|<x)=2φ(x)﹣1 D.P(|ξ|>x)=2﹣φ(x)【解答】解:∵随机变量ξ服从标准正态分布N(0,1),∴正态曲线关于ξ=0对称,∵Φ(x)=P(ξ≤x,x>0),根据曲线的对称性可得,φ(﹣x)=1﹣φ(x),故A正确;φ(2x)=P(ξ≤2x),2φ(x)=2P(ξ≤x),φ(2x)≠2φ(x),故B错误;P(|ξ|<x)=2φ(x)﹣1,故C正确;P(|ξ|>x)=2[1﹣φ(x)],故D错误.故选:AC.12.我国已成为名副其实的工业大国.据统计,在500多种主要工业品中,我国有220多种产品产量居全球第一位,工业化的大规模推进也消耗了大量的资源和能源.为加快推进工业节能与绿色发展,工业和信息化部及国家开发银行联合发布了《关于加快推进工业节能与绿色发展的通知》,大力支持工业节能降耗、降本增效,实现绿色发展.如表是某国企利用新科技进行节能降耗技术改造后连续五年的生产利润统计表:年份20142015201620172018年份代码x12345年生产利润y(单位:千万元)0.70.811.11.4则下列说法正确的是()(参考公式及数据::;,(xi)(yi)=1.7,n10)A.这五年生产利润的方差为0.06B.每年的年生产利润比前一年大约增长0.49千万元C.预测2020年该国企的年生产利润为1.68千万元D.要使年生产利润突破2千万元,至少要等到2022年【解答】解:由表中数据,计算(1+2+3+4+5)=3,(0.7+0.8+1+1.1+1.4)=1,s2[(﹣0.3)2+(﹣0.2)2+02+0.12+0.42]=0.06,所以A正确;计算0.17,所以每年的年生产利润比前一年大约增长0.17千万元,B错误;计算1﹣0.17×3=0.49,所以y关于x的线性回归方程为0.17x+0.49;因为2020年对应的年份代码为7,计算0.17×7+0.49=1.68,所以2020年的年生产利润约为1.68千万元,C正确;令2,即0.17x+0.49>2,解得x8.9,x∈N*,x≥9;所以当x=9,即到2022年时,该国企的年生产利润会突破2千万元,D正确.故选:ACD.三.填空题(共4小题)13.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P(ξ=0)=,E(ξ)=1.【解答】解:由题意知,随机变量ξ的可能取值为0,1,2;计算P(ξ=0);P(ξ=1);P(ξ=2);所以E(ξ)=0121.故答案为:,1.14.将4瓶外观相同,品质不同的酒让品酒师品尝,要求按品质优劣将4种酒排序,经过一段时间后,再让其品尝这4瓶酒,并让他重新按品质优劣将4种酒排序.根据测试中两次排序的偏离程度评估品酒师的能力.a1,a2,a3,a4,表示第一次排序为1,2,3,4的四种酒分別在第二次排序中的序号,记X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|为其偏离程度,假设a1,a2,a3,a4为1,2,3,4的等可能的各种排列,假设每轮测试之间互不影响,p1表示在1轮测试中X≤2的概率,p2表示在前3轮测试中恰好有一轮X≤2的概率,则p2=.【解答】解:依题意,基本事件的总数为24,随机变量X≤2时,4种酒全排对,或者相邻的两种位置互换,包含的基本事件个数为1+3=4,故在1轮测试中X≤2的概率P,依题意,前3轮测试中随机变量X~B(3,),所以p2,故答案为:.15.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,1002),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1100小时的概率为(附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣σ<Z<μ+σ))【解答】解:每一个元件的使用寿命超过1100小时的概率P.则该部件的使用寿命超过1100小时的概率=P[1﹣(1﹣P)(1﹣P)].故答案为:.16.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单.某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,……,r,其中r≥3),约定:每天他首先从1号外卖店取单,叫做第1次取单,之后,他等可能的前往其余r﹣1个外卖店中的任何一个店取单叫做第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的r﹣1个外卖店取单.设事件Ak={第k次取单恰好是从1号店取单},P(Ak)是事件Ak发生的概率,显然P(A1)=1,P(A2)=0,则P(A3)=,P(Ak+1)与P(Ak)的关系式为P(Ak+1)=[1﹣P(Ak)].(k∈N*)【解答】解:A2={第2次取单恰好是从1号店取单},由于每天第1次取单都是从1号店开始,根据题意,第2次不可能从1号店取单,所以P(A2)=0,A3={第3次取单恰好是从1号店取单},因此,.故答案为:;P(Ak+1)=[1﹣P(Ak)].四.解答题(共5小题)17.在2019年女排世界杯比赛中,甲队以3:1力克主要竞争对手乙队,取得了一场关键性的胜利.排球比赛按“五局三胜制的规则进行(即先胜三局的一方获胜,比赛结束),且各局之间互不影响.根据两队以往的交战成绩分析,乙队在前四局的比赛中每局获胜的概率是,但前四局打成2:2的情况下,在第五局中甲队凭借过硬的心理素质,获胜的概率为.若甲队与乙队下次在比赛上相遇.(1)求甲队以3:1获胜的概率;(2)设甲的净胜局数(例如:甲队以3:1获胜,则甲队的净胜局数为2,乙队的净胜局数为﹣2)为ξ,求ξ的分布列及Eξ.【解答】解:(1)甲队以3:1获胜的概率P.(2)由题意可知,甲队和乙队的比分有如下六种0:3,1:3,2:3,3:2,3:1,3:0,则的ξ取值有﹣3,﹣2,﹣1,1,2,3ξ=﹣3时,P,ξ=﹣2时,P,ξ=﹣1时,P,ξ=1时,P,ξ=2时,P,ξ=3时,P,所以ξ的分布列为:ξ﹣3﹣2﹣1123P所以Eξ1.18.某项数学竞赛考试共四道题,考察内容分别为代数、几何、数论、组合,已知前两题每题满分40分,后两题每题满分60分,题目难度随题号依次递增,已知学生甲答题时,若该题会做则必得满分,若该题不会做则不作答得0分,通过对学生甲以往测试情况的统计,得到他在同类模拟考试中各题的得分率,如表所示:代数几何数论组合第1题0.60.80.70.7第2题0.50.70.70.6第3题0.40.50.50.3第4题0.20.30.30.2假设学生甲每次考试各题的得分相互独立.(1)若此项竞赛考试四道题的顺序依次为代数、几何、数论、组合,试预测学生甲考试得160分的概率;(2)学生甲研究该项竞赛近五年的试题发现第1题都是代数题,于是他在赛前针对代数版块进行了强化训练,并取得了很大进步,现在,只要代数题是在试卷第1、2题的位置,他就一定能答对,若今年该项数学竞赛考试四道题的顺序依次为代数、数论、组合、几何,试求学生甲此次考试得分X的分布列.【解答】解:(1)学生甲得160分,即第1,2题做对一道,第3、4题都做对,∴P=(0.6×0.3+0.4×0.7)×0.5×0.2=0.046.(2)由题知学生甲第1题必得40分,只需考虑另三道题的得分情况,故X的所有可能取值为40,80,100,140,160,200,P(X=40)=0.3×0.7×0.7=0.147,P(X=80)=0.7×0.7×0.7=0.343,P(X=100)=0.3,P(X=140),P(X=160)=0.3×0.3×0.3=0.027,P(X=200)=0.7×0.3×0.3=0.063.∴X的分布列为:X4080100140160200P0.1470.3430.1260.2940.0270.06319.“过大年,吃水饺”是我国不少地方过春节的一大习俗,2020年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(38.45,50.4)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望及方差.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若Z~N(μ,σ2),则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544.【解答】解:(1)根据频率分布直方图可得各组的频率为:(0,10]的频率为:0.010×10=0.1,(10,20]的频率为:0.020×10=0.2,(20,30]的频率为:0.030×10=0.3,(30,40]的频率为:0.025×10=0.25,(40,50]的频率为:0.015×10=0.15,所以所抽取的100包速冻水饺该项质量指标值的样本平均数为:.(2)①∵Z服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,P(38.45<Z<50.4)=P(26.5﹣2×11.95<Z<26.5+2×11.95)﹣P(26.5﹣11.95<Z<26.5+11.95)=(0.9544﹣0.6826)÷2=0.1359∴Z落在(38.45,50.4)内的概率是0.1359.②根据题意得每包速冻水饺的质量指标值位于(10,30)内的概率为0.2+0.3=0.5,∴X~B(4,),X的可能取值分别为:0,1,2,3,4,,,,,,∴X的分布列为:X01234P∵X~B(4,),∴.,D(X)=41.20.时至21世纪.环境污染已经成为世界各国面临的一大难题,其中大气污染是目前城市急需应对的一项课题.某市号召市民尽量减少开车出行以绿色低碳的出行方式支持节能减排.原来天天开车上班的王先生积极响应政府号召,准备每天从骑自行车和开小车两种出行方式中随机选择一种方式出行.从即日起出行方式选择规则如下:第一天选择骑自行车方式上班,随后每天用“一次性抛掷6枚均匀硬币”的方法确定出行方式,若得到的正面朝上的枚数小于4,则该天出行方式与前一天相同,否则选择另一种出行方式.(1)求王先生前三天骑自行车上班的天数X的分布列;(2)由条件概率我们可以得到概率论中一个很重要公式﹣﹣全概率公式.其特殊情况如下:如果事件A1A2相互对立并且P(Ai)>0(i=1,2),则对任一事件B有P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)=P(A1B)+P(A2B).设Pn(n∈N*)表示事件“第n天王先生上班选择的是骑自行车出行方式”的概率.(i)用pn﹣1表示pn(n≥2);(ii)王先生的这种选择随机选择出行方式有没有积极响应该市政府的号召,请说明理由.【解答】解:(1)设一把投掷6枚均匀的硬币,得到正面向上的枚数为ξ,则ξ~B(6,),故P(ξ<4)=()6()6()6()6,P(ξ≥4)=1,X的可能取值为1,2,3,P(X=1)•,P(X=3),P(X=2)=1,∴X的分布列为:X123P(2)(i)Pn=Pn﹣1•(1﹣Pn﹣1)•Pn﹣1(n≥2).(ii)由(i)可知:Pn(Pn﹣1),又P1,∴{Pn}是以为首项,以为公比的等比数列,∴Pn•()n﹣1,即Pn•()n﹣1.∵Pn•()n﹣1,∴王先生每天骑自行车的概率总大于开小汽车的概率,∴王先生的这种选择随机选择出行方式有积极响应该市政府的号召.21.某高校的大一学生在军训结束前,需要进行各项过关测试,其中射击过关测试规定:每位测试的大学生最多有两次射击机会,第一次射击击中靶标,立即停止射击,射击测试过关,得5分;第一次未击中靶标,继续进行第二次射击,若击中靶标,立即停止射击,射击测试过关,得4分;若未击中靶标,射击测试未能过关,得2分.现有一个班组的12位大学生进行射击过关测试,假设每位大学生两次射击击中靶标的概率分别为m,0.5,每位大学生射击测试过关的概率为p.(1)求p(用m表示);(2)设该班组中恰有9人通过射击过关测试的概率为f(p),求f(p)取最大值时p和m的值;(3)在(2)的结果下,求该班组通过射击过关测试所得总分的平均数.【解答】解:(1)每位大学生射击测试过关的概率:P=1﹣(1﹣m)(1﹣0.5)=0.5+0.5m.(2)f(p),(0<p<1),∴f′(p)=3(1﹣p)2(3﹣4p),0<p<1,由f′(p)=0,得p=0.75,由f′(p)>0,得0<p<0.75,由f′(p)<0,得0.75<p<1,∴f(p)在(0,0.75)上是增函数,在(0.75,1)上是减函数,∴p=0.75是f(p)的极大值点,也是f(p)的最大值点,此时,由0.5+0.5m=0.75,解得m=0.5.∴f(p)取得最大值时,p,m的值分别为0.75,0.5.(3)设一位大学生射击过关测试所得分数为随机变量X,则X的可能取值分别为5,4,2,则P(X=5)=0.5,P(X=4)=(1﹣0.5)×0.5=0.25,P(X=2)=(1﹣0.5)(1﹣0.5)=0.25,∴一位大学生射击过关测试所得分数的平均数:E(X)=5×0.5+4×0.25+2×0.25=4,∴该班组通过射击过关测试所得总分的平均数为:12×4=48.《第七章随机变量及其分布》单元检测试卷(三)一、选择题1.甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为()A.0.32B.0.18C.0.50D.0.05762.某工厂的一台流水线生产质量稳定可靠,已知在正常工作状态下生产线上生产的零件内径尺寸(单位:)服从正态分布.甲、乙两名同学正进行尺寸测量练习.甲、乙对各自抽取的个零件测量零件内径尺寸(单位:)如下,甲同学测量数据:,,,,;乙同学测量数据:,,,,.则可以判断()A.甲、乙两个同学测量都正确 B.甲、乙两个同学测量都错误C.甲同学测量正确,乙同学测量错误 D.甲同学测量错误,乙同学测量正确3.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,设此时盒中旧球个数为X,的值为()A. B. C. D.4.已知,随机变量的分布列如下,当增大时()01A.增大,增大 B.减小,增大C.增大,减小 D.碱小,减小5.(多选题)某单位组织开展知识竞赛活动,以单位参加比赛,某支部在5道题中(有3道选择题和道填空题),不放回地依次随机抽取道题作答,设事件A为“第1次抽到选择题”,事件B为“第次抽到选择题”,则下列结论中正确的是()A. B.C. D.6.(多选题)下列命题中,正确的命题有()A.已知随机变量服从二项分布,若,,则B.将一组数据中的每个数据都加上同一个常数后,方差恒不变C.设随机变量服从正态分布,若,则D.若某次考试的标准分服从正态分布,则甲、乙、丙三人恰有2人的标准分超过90分的概率为二、填空题7.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为,两个路口连续遇到红灯的概率为,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为___________.8.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X的期望是________.9.一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答).10.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有,,,,的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的倍作为其奖金(单位:元).若随机变量和分别表示赌客在一局赌博中的赌金和奖金,则________(元).三、解答题11.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.12.国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.武汉市在实施垃圾分类之前,从本市人口数量在两万人左右的320个社区中随机抽取50个社区,对这50个社区某天产生的垃圾量(单位:吨)进行了调查,得到如下频数分布表,并将人口数量在两万人左右的社区垃圾数量超过28吨/天的确定为“超标”社区:垃圾量X[12.5,15.5)[15.5,18.5)[18.5,21.5)[21.5,24.5)[24.5,27.5)[27.5,30.5)[30.5,33.5]频数56912864(1)通过频数分布表估算出这50个社区这一天垃圾量的平均值(精确到0.1);(2)若该市人口数量在两万人左右的社区这一天的垃圾量大致服从正态分布N(μ,σ2),其中μ近似为(1)中的样本平均值,σ2近似为样本方差s2,经计算得s=5.2.请利用正态分布知识估计这320个社区中“超标”社区的个数.(3)通过研究样本原始数据发现,抽取的50个社区中这一天共有8个“超标”社区,市政府决定对这8个“超标”社区的垃圾来源进行跟踪调查.现计划在这8个“超标”社区中任取5个先进行跟踪调查,设Y为抽到的这一天的垃圾量至少为30.5吨的社区个数,求Y的分布列与数学期望.(参考数据:P(μ﹣σ<X≤μ+σ)≈0.6827;P(μ﹣2σ<X≤μ+2σ)≈0.9545;P(μ﹣3σ<X≤μ+3σ)≈0.9974)答案解析一、选择题1.甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为()A.0.32B.0.18C.0.50D.0.0576【答案】D【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论