




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
绝密★启用前马鞍山市含山2023-2024学年八年级上学期期末数学测试卷考试范围:八年级上册(人教版);考试时间:120分钟注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上评卷人得分一、选择题(共10题)1.(甘肃省庆阳市宁县五中八年级(上)第二次月考数学试卷)下列图形具有稳定性的是()A.正五边形B.正方形C.梯形D.等腰三角形2.(2022年春•江阴市期中)下列各式、、、+1、中分式有()A.2个B.3个C.4个D.5个3.(湖北省武汉市武昌区八年级(上)期末数学试卷)下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2B.4x2-9=(4x+3)(4x-3)C.x2-5x+6=(x-2)(x-3)D.a2-2a+1=(a+1)24.(2016•卢龙县一模)下列等式成立的是()A.(a+4)(a-4)=a2-4B.2a2-3a=-aC.a6÷a3=a2D.(a2)3=a65.(2022年河北省中考数学模拟试卷(十))已知3a=3b-4,则代数式3a2-6ab+3b2-4的值为()A.B.-C.2D.36.(人教版八年级上册《第11章全等三角形》2022年单元测试卷(福建省福州市福清市沙浦中学)(5))下列说法错误的是()A.全等三角形对应角所对的边是对应边B.全等三角形两对应边所夹的角是对应角C.如果两个三角形都与另一个三角形全等,那么这两个三角形也全等D.等边三角形都全等7.(广东省中山市八年级(上)中段限时训练数学试卷)如图,已知△ABC≌△CDA,则下列结论中,一定成立的是()A.BC=ACB.AD=ABC.CD=ACD.AB=CD8.(沪教版七年级上册《第10章分式》2022年同步练习卷B(2))下列分式中,属于最简分式的是()A.B.C.D.9.(2022年春•定陶县期中)(2022年春•定陶县期中)如图所示,四边形OABC是正方形,边长为4,点A、C分别在x轴、y轴的正半轴上,点P在OA上,且P点的坐标为(3,0),Q是OB上一动点,则PQ+AQ的最小值为()A.5B.C.4D.610.(四川省资阳市安岳县八年级(上)期末数学试卷)下列计算正确的是()A.(ab4)4=a4b8B.(a2)3÷(a3)2=0C.3m2÷(3m-1)=m-3m2D.(-x)6÷(-x3)=-x3评卷人得分二、填空题(共10题)11.(2021•大东区二模)如图,等边ΔABC的边长是2,点D是线段BC上一动点,连接AD,点E是AD的中点,将线段DE绕点D顺时针旋转60°得到线段DF,连接FC,当ΔCDF是直角三角形时,则线段BD的长度为______.12.在△ABC中,∠ABC=30°,AB=8,AC=2,边AB的垂直平分线与直线BC相交于点F,则线段CF的长为.13.在实数范围内分解因式:x2+4x-2=.14.如图,直角坐标系中,点A、B是正半轴上两个动点,以AB为边作一正方形ABCD,对角线AC、BD的交点为E,若OE=2,则经过E点的双曲线为.15.(苏科新版八年级(上)中考题单元试卷:第1章全等三角形(08))(2013•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为.16.(2021•江津区模拟)计算(-17.(2021•两江新区模拟)计算:(-2)18.(山东省枣庄市山亭区七年级(下)期末数学试卷)生活中的数学:(1)如图1所示,一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是:.(2)小河的旁边有一个甲村庄(如图2所示),现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是:.(3)如图3所示,在新修的小区中,有一条“Z”字形绿色长廊ABCD,其中AB∥CD,在AB,BC,CD三段绿色长廊上各修一小凉亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,只需要测出线段ME的长度(用两个字母表示线段).这样做合适吗?请说出理由.19.(2021•莲湖区二模)如图,在正方形ABCD中,以AB为边,在正方形ABCD内部作等边三角形ΔABE,点P在对角线AC上,且AC=6,则PD+PE的最小值为______.20.(2022年甘肃省兰州市中考数学模拟试卷(四)())(2003•甘肃)分解因式:x2-5x-14=.评卷人得分三、解答题(共7题)21.(2018年吉林省中考数学全真模拟试卷(七))如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个小方格的边长均为1个单位长度).(1)请画出△ABC关于x轴对称的△A(2)将△ABC绕点O逆时针旋转90∘,画出旋转后得到的△A2B222.如图,△ABC中,AB=AC,E为BC中点,BD⊥AC,垂足为D,∠EAD=25°.求:∠ABD.23.如图1,已知Rt△ABC中,AB=BC,AC=2,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),点C在DE上点B在DF上.(1)求重叠部分△BCD的面积;(2)如图2,将直角三角板DEF绕D点按顺时针方向旋转30度,DE交BC于点M,DF交AB于点N,①请说明DM=DN;②在此条件下重叠部分的面积会发生变化吗?若发生变化,请求出重叠部分的面积,若不发生变化,请说明理由;(3)如图3,将直角三角板DEF绕D点按顺时针方向旋转α度(0<α<90),DE交BC于点M,DF交AB于点N,则DM=DN的结论仍成立吗?重叠部分△DMN的面积会变吗?(请直接写出结论不需说明理由)24.(广西玉林市北流市扶新中学七年级(下)期中数学试卷)利用因式分解求代数式4a3b+8a2b2+4ab3的值,其中a+b=1,ab=.25.已知△ABC,如图(1),边BC上有一个点D,连接AD,则图中共有多少个三角形?如图(2),边BC上有两个点D,E,连接AD,AE,则图中共有多少个三角形?如图(3),边BC上有三个点D,E,F,连接AD,AE,AF,则图中共有多少个三角形?如图(4),边BC上有n个点D,E,F,…,连接AD,AE,AF,…则图中共有多少个三角形?26.(2022年春•宝应县校级月考)计算(1)(-)-2+(π-3.14)+(-2)2(2)2(a2)3-a2-a4+(2a4)2÷a2;(3)(p-q)4÷(q-p)3•(p-q)2(4)(-2x)2•(2x+y)-4x2y.27.(2021•牡丹区一模)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的2(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.参考答案及解析一、选择题1.【答案】【解答】解:正五边形,正方形,梯形,等腰三角形中具有稳定性的是等腰三角形.故选D.【解析】【分析】根据三角形具有稳定性解答.2.【答案】【解答】解:、+1是分式,故选:A.【解析】【分析】根据分母中含有字母的式子是分式,可得答案.3.【答案】【解答】解:A、原式=(x+1)(x+2),故本选项错误;B、原式=(2x+3)(2x-3),故本选项错误;C、原式=(x-2)(x-3),故本选项正确;D、原式=(a-1)2,故本选项错误;故选:C.【解析】【分析】将各自分解因式后即可做出判断.4.【答案】【解答】解:A、原式=a2-16,不成立;B、原式不能合并,不成立;C、原式=a3,不成立;D、原式=a6,成立.故选D.【解析】【分析】A、原式利用平方差公式化简得到结果,即可作出判断;B、原式不能合并,错误;C、原式利用同底数幂的除法法则计算得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.5.【答案】【解答】解:原式=3(a-b)2-4,由3a=3b-4,得到(a-b)=-,则原式=-4=.故选A【解析】【分析】原式前三项提取3,再利用完全平方公式化简,将已知等式变形后代入计算即可求出值.6.【答案】【解答】解:A、全等三角形对应角所对的边是对应边,正确,不合题意;B、全等三角形两对应边所夹的角是对应角,正确,不合题意;C、如果两个三角形都与另一个三角形全等,那么这两个三角形也全等,正确,不合题意;D、等边三角形不一定全等,故此选项错误,符合题意.故选:D.【解析】【分析】利用全等三角形的性质,分别分析得出即可.7.【答案】【解答】解:∵△ABC≌△CDA,∴BC=AD,A不成立;AD=BC,B不成立;CD=AB,C不成立;AB=CD,D成立,故选:D.【解析】【分析】根据全等三角形的对应边相等进行判断即可.8.【答案】【解答】解:A、=,故此选项错误;B、==,故此选项错误;C、==,故此选项错误;D、是最简分式,故此选项正确;故选:D.【解析】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.9.【答案】【解答】解:作出P关于OB的对称点D,则D的坐标是(0,3),则PQ+QA的最小值就是AD的长,则OD=3,因而AD==5,则PD+PA和的最小值是5,故选A.【解析】【分析】作出P关于OB的对称点D,则D的坐标是(0,3),则PQ+QA的最小值就是AD的长,利用勾股定理即可求解.10.【答案】【解答】解:A、(ab4)4=a4b16,错误;B、(a2)3÷(a3)2=1,错误;C、3m2÷(3m-1)=,错误;D、(-x)6÷(-x3)=-x3,正确;故选D.【解析】【分析】根据积的乘方、整式的除法进行计算即可.二、填空题11.【答案】解:①当∠DFC=90°时,当点F在AC上时,∵ΔABC是等边三角形且边长为2,∴AB=AC=BC=2,∠C=60°,∴∠FDC=180°-∠DFC-∠C=30°,∵DE旋转60°得到线段DF,∴∠EDF=60°,∴∠ADC=∠EDF+∠FDC=90°,∴∠DAC=180°-∠ADC-∠C=30°,∴DF=1∵E是AD的中点,∴DE=1∴DE=DF,即AD⊥BC时,∠DFC=90°,∴BD=1②∠DCF=90°,如图,延长DF到G使DG=DA,连接AG、CG,过G作GH⊥BC交BC延长线于H,∵AD=DG,∠ADG=60°,∴ΔADG是等边三角形,∴∠DAG=60°,AD=AG,∵ΔABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∴∠BAC=∠DAG,∴∠BAC-∠DAC=∠DAG-∠DAC,即∠BAD=∠CAG,在ΔABD和ΔACG中,∴ΔABD≅ΔACG(SAS),∴BD=CG,∠B=∠ACG=60°,∴∠GCH=180°-∠ACB-∠ACG=60°,∵GH⊥BC,∴∠H=90°,∴∠CGH=30°,∴CG=2CH,设CH=x,则CG=BD=2x,∵E是AD中点,∴DE=1由旋转性质可知DF=DE,∵AD=DG,∴DF=1∵∠DCF=90°=∠H,∠CDF=∠HDG,∴ΔDCF∽ΔDHG,∴DC∴DC=1∴DC=CH=x,∵BD+DC=2,∴2x+x=2,x=2∴BD=4③当∠CDF=90°时,∵∠ADF=60°,∴∠ADF+∠CDF=210°>180°,∴∠CDF=90°不成立,综上,BD=1或4【解析】①当∠DFC=90°时,当点F在AC上时,根据等边三角形的性质得∠FDC=180°-∠DFC-∠C=30,根据旋转的性质得DF=12AD,根据等腰三角形三线合一,得BD=12BC=1.②∠DCF=90°,延长DF到G使DG=DA,连接AG、CG,过G作GH⊥BC交BC延长线于H,根据相全等三角形的判定得ΔABD≅ΔACG,即CG=2CH,设CH=x,则CG=BD=2x,由旋转性质得出DF=12DG,再由形似三角形的判定得出ΔDCF∽ΔDHG,再由形似的性质得出12.【答案】【解答】解:如图,作AD⊥BC于D,∵AC=AC′=2,AD⊥BC于D,∴C′D=CD,∵EF为AB垂直平分线,∴AE=BE=AB=4,EF⊥AB,∵∠ABC=30°,∴EF=BE×tan30°=,BF=2EF=,在Rt△ABD中,∵∠ADB=90°,∠ABD=30°,∴AD=AB=4,由勾股定理得:CD==2,BD==4,即F在C和D之间,∵BC=BD-CD=4-2=2,∴CF=BF-BC=-2=,C′F=BC′-BF=4+2-=,故答案为:或.【解析】【分析】在△ABC中,已知两边和其中一边的对角,符合题意的三角形有两个,画出△ABC与△ABC′.作AD⊥BC于D,根据等腰三角形三线合一的性质得出C′D=CD.由EF为AB的垂直平分线求出AE和BE长,根据勾股定理和解直角三角形求出AD、CD、BD、BF,即可求出答案.13.【答案】【解答】解:原式=x2+4x+4-6=(x+2)2-()2=[(x+2)+][(x+2)-]=[x+2+][x+2-],故答案为:[x+2+][x+2-].【解析】【分析】根据完全平方公式、平方差公式,可分解因式.14.【答案】【解答】解:作EM⊥OB于M,EN⊥OA于N,如图所示:则四边形OMEN是矩形,∠EMB=∠ENA=90°,∴∠MEN=90°,∵四边形ABCD是正方形,∴AC⊥BD,AE=BE,∴∠AEB=90°,∴∠AEN=∠BEM,在△AEN和△BEM中,,∴△AEN≌△BEM(AAS),∴EN=EM,∴四边形OMEN是正方形,∴OM=EN,△OEM是等腰直角三角形,∴OM=EM=OE=,∴E(,),设经过E点的双曲线为y=,则k=×=2,∴y=.故答案为:y=.【解析】【分析】作EM⊥OB于M,EN⊥OA于N,由AAS证明△AEN≌△BEM,得出EN=EM,证出四边形OMEN是正方形,得出OM=EN,△OEM是等腰直角三角形,因此OM=EM=,得出E的坐标为(,),设经过E点的双曲线为y=,求出k的值,即可得出结果.15.【答案】【解答】解:探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,∵AE⊥CD,∠BCD=90°,∴四边形AFCE为矩形,∴∠FAE=90°,∴∠FAB+∠BAE=90°,∵∠EAD+∠BAE=90°,∴∠FAB=∠EAD,∵在△AFB和△AED中,,∴△AFB≌△AED(AAS),∴AF=AE,∴四边形AFCE为正方形,∴S四边形ABCD=S正方形AFCE=AE2=102=100;应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,则∠ADF+∠ADC=180°,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADF,∵在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AF=AE=19,∴S四边形ABCD=S△ABC+S△ACD=BC•AE+CD•AF=×10×19+×6×19=95+57=152.故答案为:152.【解析】【分析】探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解;应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解.16.【答案】解:(-=4-2=2故答案为:2.【解析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.【答案】解:(-2)=1=3故答案为:3【解析】首先计算负整数指数幂、特殊角的三角函数值,然后计算加法,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【答案】【解答】解:(1)一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是三角形的稳定性;(2)过甲向AB做垂线,运用的原理是:垂线段最短;(3)∵AB∥CD,∴∠B=∠C,∵点M是BC的中点,∴MB=MC,在△MCF和△MBE中,∴△MEB≌△MFC(SAS),∴ME=MF,∴想知道M与F之间的距离,只需要测出线段ME的长度.【解析】【分析】(1)根据三角形的稳定性解答;(2)根据垂线段最短解答;(3)首先证明△MEB≌△MFC,根据全等三角形的性质可得ME=MF.19.【答案】解:∵四边形ABCD是正方形,∴B,D关于AC对称,∴PD=PB,∴PD+PE=PB+PE,∴PD+PE的最小值为BE,在RAB=sin45°×AC=2∵等边ΔABE,∴BE=AB=32故答案为:32【解析】由正方形的轴对称性知:PD=PB,从而转化为PB+PE最小即可.本题考查了正方形的性质以及轴对称问题,将两条线段和最小问题转化为两点之间,线段最短是解决问题的关键.20.【答案】【答案】因为-14=2×(-7),2+(-7)=-5,所以x2-5x-14=(x+2)(x-7).【解析】x2-5x-14=(x+2)(x-7).三、解答题21.【答案】解:(1)如图所示,△A(2)如图所示,△A∵OB=42+∴点B旋转到点B2所经过的路径长为【解析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)分别作出点A、B、C绕点O逆时针旋转90∘所得对应点,再顺次连接,根据弧长公式可求得点B旋转到点B本题主要考查作图-旋转变换、轴对称变换,解题的关键是根据轴对称变换和旋转变换得到变换后的对应点及弧长公式.22.【答案】【解答】解:∵AB=AC,BC中点为E,∠EAD=25°,∴∠BAC=50°,∵BD⊥AC,∴∠BDA=90°,∴∠ABD=40°.【解析】【分析】根据等腰三角形的三线合一的性质可得∠BAC的度数,再根据垂直的定义和三角形内角和定理即可求解.23.【答案】(1)∵AB=BC,AC=2,∴CD=AD=1,则△BCD的面积是×CD?BD=×1×1=;(2)作DQ⊥BC,DP⊥AB分别于点Q,P,又∵AB=BC,CD=AD,∴∠A=∠C,∴△CDQ≌△ADP,∴DQ=DP,则四边形BQDP是正方形.∵∠EDQ+∠QDN=∠NDP+∠QDN∴∠EDQ=∠NDP又∵∠MQD=∠NPD∴△MDQ≌△NDP,∴DM=DN,∴直角三角板DEF绕D点按顺时针方向旋转30度,此条件下重叠部分的面积等于正方形BQDP的面积是DQ2=12=1.(3)DM=DN的结论仍成立,面积不会变.【解析】24.【答案】【解答】解:4a3b+8a2b2+4ab3=4ab(a2+2ab+b2)=4ab(a+b)2,当a+b=1,ab=时,原式=4××1=.【解析】【分析】把4a3b+8a2b2+4ab3提取公因式4ab得到4ab(a+b)2,再整体代值计算.25.【答案】【解答】解:如图(1),图中共,2+1=3个三角形;如图(2),图中共有3+2+1=6个三角形;如图(3),图中共有4+3+2+1=10个三角形;如图(4),图中共有(n+1)+n+(n-1)+…+1==个三角形.【解析】【分析】根据三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形进行分析,然后要数三角形的个数,显然只要数出BC上共有多少条线段即可.26.【答案】【解答】解:(1)原式=4+π-3.14+4=π+4.86;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025盐城幼儿师范高等专科学校辅导员考试试题及答案
- 2025年广东省深圳市十五校中考历史二模试卷
- 新生儿正常生理特征及护理要点
- 换牙期卫生与保健
- 2025年游戏设计专业考试题及答案
- 环境科学与生态理论2025年考试试卷及答案
- 网络工程师考试题及答案2025年
- 2025年物流与供应链管理职业能力考核试题及答案
- 2025年网络教育与在线学习考试试卷及答案
- 2025年图书馆学基础知识考试试题及答案
- 2025年中国边云协同行业市场现状及未来发展前景预测分析报告
- 2025-2030年辣椒素产业行业市场现状供需分析及投资评估规划分析研究报告
- 2025中国铁路南宁局集团有限公司招聘高校毕业生58人三(本科及以上学历)笔试参考题库附带答案详解
- 新疆开放大学2025年春《国家安全教育》形考作业1-4终考作业答案
- 大国工匠活动方案
- 《脑炎护理查房》课件
- 职业院校技能大赛教学能力比赛备赛策略与实践经验分享
- 成人重症患者人工气道湿化护理专家共识
- 国家开放大学《统计与数据分析基础》形考任务1-5答案
- 动静脉内瘘评估护理课件
- 开展2025年全国“安全生产月”活动的通知
评论
0/150
提交评论