




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《10.1.3古典概型》教案【教材分析】古典概型是继事件的关系与运算的后续部分,本节课主要讲解了古典概型的特征及如何求古典概型的概率.本节内容在教材上起到承上启下的作用,即使对前面内容的进一步应用,又为后续概率的性质做好铺垫.【教学目标与核心素养】课程目标1.理解古典概型的特征和计算公式,会判断古典概型.2.会求古典概型中事件的概率.数学学科素养1.数学抽象:古典概型的概念.2.逻辑推理:古典概型的判断.3.数学运算:求古典概型.4.数学建模:通过实际问题抽象出数学模型.【教学重点和难点】重点:理解古典概型的特征和计算公式.难点:求古典概型中事件的概率.【教学过程】一、情景导入在10.1.1节中,我们讨论过彩票摇号试验、抛掷一枚均匀硬币的试验及掷一枚质地均匀骰子的试验.它们的共同特征有哪些?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本233-238页,思考并完成以下问题1、古典概型的特征是?2、古典概型概率公式?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。三、新知探究1.概率对随机事件发生可能性大小的度量(数值)称为事件的概率(probability),事件A的概率用P(A)表示.2.古典概型(1)古典概型考察这些试验的共同特征,就是要看它们的样本点及样本空间有哪些共性.可以发现,它们具有如下共同特征:①有限性:样本空间的样本点只有有限个;②等可能性:每个样本点发生的可能性相等.我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型(classicalmodelsofprobability),简称古典概型.(2)概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=eq\f(k,n)=eq\f(nA,nΩ).其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.四、典例分析、举一反三题型一简单古典概型的计算例1抛掷两枚质地均匀的骰子(标记为I号和II号),观察两枚骰子分别可能出现的基本结果,(1)写出这个试验的样本空间,并判断这个试验是否为古典概型;(2)求下列事件的概率:A=“两个点数之和是5”;B=“两个点数相等”;C=“I号骰子的点数大于II号骰子的点数”.【答案】(1),是古典概型(2);;【解析】(1)抛掷一枚骰子有6种等可能的结果,I号骰子的每一个结果都可与II号骰子的任意一个结果配对,组成掷两枚骰子试验的一个结果.用数字m表示I号骰子出现的点数是m,数字n表示II号骰子出现的点数是n,则数组表示这个试验的一个样本点.因此该试验的样本空间,其中共有36个样本点.由于骰子的质地均匀,所以各个样本点出现的可能性相等,因此这个试验是古典概型.(2)因为,所以,从而;因为,所以,从而;因为C={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5)},所以,从而;解题技巧(求古典概型的一般步骤)(1) 明确实验的条件及要观察的结果,用适当的符号(字母/数字/数组等)表示实验的可能结果(可借助图表);(2) 根据实际问题情景判断样本点的等可能性;(3) 计算样本点总个数及事件包含的样本点个数,求出事件A的概率.跟踪训练一1.某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学ABC女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.【答案】(1)见解析.(2)eq\f(2,5).【解析】(1)从6名同学中随机选出2人参加知识竞赛的样本空间为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的样本空间为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=eq\f(6,15)=eq\f(2,5).题型二较复杂的古典概型的计算例2从两名男生(记为和)、两名女生(记为和)中任意抽取两人.分别写出有放回简单随机抽样、不放回简单随机抽样和按性别等比例分层抽样的样本空间.(2)在三种抽样方式下,分别计算抽到的两人都是男生的概率.【答案】(1)详见解析(2);;【解析】设第一次抽取的人记为,第二次抽取的人记为,则可用数组表示样本点.(1)根据相应的抽样方法可知:有放回简单随机抽样的样本空间,,,不放回简单随机抽样的样本空间,,,按性别等比例分层抽样,先从男生中抽一人,再从女生中抽一人,其样本空间(2)设事件A=“抽到两名男生”,则对于有放回简单随机抽样,,因为抽中样本空间中每一个样本点的可能性都相等,所以这是一个古典概型.因此.对于不放回简单随机抽样,,因为抽中样本空间中每一个样本点的可能性都相等,所以这是一个古典概型.因此因为按性别等比例分层抽样,不可能抽到两名男生,所以,因此.解题技巧(“有放回”与“无放回”的区别)“有放回”是指抽取物体时,每一次抽取之后,都将被抽取的物体放回原处,这样前后两次抽取时,被抽取的物体的总数是一样的.“无放回”是指抽取物体时,在每一次抽取后,被抽取的物体放到一边,并不放回到原处,这样,前后两次抽取时,后一次被抽取的物体的总数较前一次被抽取的物体总数少1.这两种情况下基本事件总数是不同的.跟踪训练二1.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.eq\f(1,3)B.eq\f(1,2)C.eq\f(2,3)D.eq\f(5,6)【答案】C.【解析】从4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为eq\f(2,3),选C.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计10.10.1.3古典概型1.概率例1例22.古典概型特征公式七、作业课本238页练习,243页习题10.1的6、7、8题.【教学反思】由于概率的抽象性,所以求古典概型概率主要写出事件所有的样本空间,既满足某特定条件的所有样本空间,然后套公式即可,需注意的是写样本空间时需保证不重不落.《10.1.3古典概型》导学案【学习目标】知识目标1.理解古典概型的特征和计算公式,会判断古典概型.2.会求古典概型中事件的概率.核心素养1.数学抽象:古典概型的概念.2.逻辑推理:古典概型的判断.3.数学运算:求古典概型.4.数学建模:通过实际问题抽象出数学模型.【学习重点】:理解古典概型的特征和计算公式.【学习难点】:求古典概型中事件的概率.【学习过程】一、预习导入阅读课本233-238页,填写。1.概率对随机事件发生可能性大小的度量(数值)称为事件的概率(probability),事件A的概率用P(A)表示.2.古典概型(1)古典概型考察这些试验的共同特征,就是要看它们的样本点及样本空间有哪些共性.可以发现,它们具有如下共同特征:①有限性:样本空间的样本点只有______个;②等可能性:每个样本点发生的可能性相等.我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型(classicalmodelsofprobability),简称古典概型.(2)概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=eq\f(k,n)=eq\f(nA,nΩ).其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.小试牛刀1.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点数是()A.3B.4C.5D.62.下列试验中是古典概型的是()A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向一个圆面内随机地投一个点,该点落在圆内任意一点都是等可能的D.射击运动员向一靶心进行射击,试验结果为命中10环,命中9环,…,命中0环3.若书架上放有数学,物理、化学书分别是5本、3本、2本,则随机抽出一本是物理书的概率为()A.eq\f(1,5)B.eq\f(3,10)C.eq\f(3,5)D.eq\f(1,2)4.在20瓶饮料中,有2瓶已过了保质期.从中任取1瓶,取到已过保质期的饮料的概率是________.【自主探究】题型一简单古典概型的计算例1抛掷两枚质地均匀的骰子(标记为I号和II号),观察两枚骰子分别可能出现的基本结果,(1)写出这个试验的样本空间,并判断这个试验是否为古典概型;(2)求下列事件的概率:A=“两个点数之和是5”;B=“两个点数相等”;C=“I号骰子的点数大于II号骰子的点数”.跟踪训练一1.某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学ABC女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.题型二较复杂的古典概型的计算例2从两名男生(记为和)、两名女生(记为和)中任意抽取两人.分别写出有放回简单随机抽样、不放回简单随机抽样和按性别等比例分层抽样的样本空间.(2)在三种抽样方式下,分别计算抽到的两人都是男生的概率.跟踪训练二1.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.eq\f(1,3)B.eq\f(1,2)C.eq\f(2,3)D.eq\f(5,6)【达标检测】1.抛掷一枚骰子,出现偶数的基本事件个数为()A.1B.2C.3D.42.若以连续掷两颗骰子分别得到的点数m,n作为点P的横、纵坐标,则点P落在圆内的概率为()A. B. C. D.3.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A. B.C. D.4.从2、3、8、9任取两个不同的数值,分别记为a、b,则为整数的概率=.5.某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:ABCDE身高1.691.731.751.791.82体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.答案小试牛刀1.D2.B.3.B.4.eq\f(1,10)自主探究例1【答案】(1),是古典概型(2);;【解析】(1)抛掷一枚骰子有6种等可能的结果,I号骰子的每一个结果都可与II号骰子的任意一个结果配对,组成掷两枚骰子试验的一个结果.用数字m表示I号骰子出现的点数是m,数字n表示II号骰子出现的点数是n,则数组表示这个试验的一个样本点.因此该试验的样本空间,其中共有36个样本点.由于骰子的质地均匀,所以各个样本点出现的可能性相等,因此这个试验是古典概型.(2)因为,所以,从而;因为,所以,从而;因为C={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5)},所以,从而;跟踪训练一1.【答案】(1)见解析.(2)eq\f(2,5).【解析】(1)从6名同学中随机选出2人参加知识竞赛的样本点为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的样本点为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=eq\f(6,15)=eq\f(2,5).例2【答案】(1)详见解析(2);;【解析】设第一次抽取的人记为,第二次抽取的人记为,则可用数组表示样本点.(1)根据相应的抽样方法可知:有放回简单随机抽样的样本空间,,,不放回简单随机抽样的样本空间,,,按性别等比例分层抽样,先从男生中抽一人,再从女生中抽一人,其样本空间(2)设事件A=“抽到两名男生”,则对于有放回简单随机抽样,,因为抽中样本空间中每一个样本点的可能性都相等,所以这是一个古典概型.因此.对于不放回简单随机抽样,,因为抽中样本空间中每一个样本点的可能性都相等,所以这是一个古典概型.因此因为按性别等比例分层抽样,不可能抽到两名男生,所以,因此.跟踪训练二1.【答案】C.【解析】从4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为eq\f(2,3),选C.当堂检测 1-3.CDB4.15.【答案】(Ⅰ)(Ⅱ)【解析】(1)从身高低于1.80的同学中任选2人,其一切可能的结果的样本点有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6个.由于每个人被选到的机会均等,因此这些样本点的出现是等可能的.选到的2人身高都在1.78以下的样本空间有:(A,B),(A,C),(B,C),共3个,因此选到的2人身高都在1.78以下的概率为;从该小组同学中任选2人其一切可能的结果的样本点:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的样本点有:(C,D),(C,E),(D,E)共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为.《10.1.3古典概型》课后作业基础巩固1.从集合的所有子集中,任取一个,这个集合恰是集合子集的概率是()A. B. C. D.2.已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.13.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.4.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A. B. C. D.5.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为.现从中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A. B. C. D.6.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是___.7.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.8.某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:车间数量50150100(1)求这6件样品中来自,,各车间产品的数量;(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.能力提升9.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为()A. B. C. D.10.现有7名数理化成绩优秀者,分别用,,,,,,表示,其中,,的数学成绩优秀,,的物理成绩优秀,,的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则和不全被选中的概率为____________.11.某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.素养达成12.20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.《10.1.3古典概型》课后作业答案解析基础巩固1.从集合的所有子集中,任取一个,这个集合恰是集合子集的概率是()A. B. C. D.【答案】C【解析】集合的子集个数为,集合的子集个数为,因此,所求概率为,故选:C。2.已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.1【答案】B【解析】件产品中有件次品,记为,,有件合格品,记为,,,从这件产品中任取件,有种,分别是,,,,,,,,,,恰有一件次品,有种,分别是,,,,,,设事件“恰有一件次品”,则,故选B.3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.【答案】D【解析】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是.故选D.4.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A. B. C. D.【答案】C【解析】由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;5.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为.现从中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A. B. C. D.【答案】B【解析】由题意可知,若该图形为“和谐图形”,则另外两个三角形上的数字之和恰为.从中任取两个数字的所有样本点有,,,共种,而其中数字之和为的样本点有,共种,所以所求概率.故选.6.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是___.【答案】【解析】从这4个数中任取2个数共有种取法,其中乘积为6的有和两种取法,因此所求概率为.7.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.【答案】【解析】据题意,所有可能的客车通过顺序的样本点为(上、中、下),(上、下、中),(中、上、下),(中、下、上),(下,中,上),(下,上,中),共6种;其中该人可以乘上上等车的样本点有(中、上、下),(中、下、上),(下,上,中),共3种;则其概率为;故答案为8.某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:车间数量50150100(1)求这6件样品中来自,,各车间产品的数量;(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.【答案】(1)1,2,3;(2).【解析】(1)因为样本容量与总体中的个体数的比是,所以车间产品被选取的件数为,车间产品被选取的件数为,车间产品被选取的件数为.(2)设6件自、、三个车间的样品分别为:;,,;,.则从6件样品中抽取的这2件产品构成的所有样本点为:,,,,,,,,,,,,,,,共15个.每个样品被抽到的机会均等,因此这些样本点的出现是等可能的.记事件:“抽取的这2件产品来自相同车间”,则事件包含的样本点有:,,,,共4个所以.所以这2件商品来自相同车间的概率为.能力提升9.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论