版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级数学下册第7章空间图形的初步认识专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、把图中的纸片沿虚线折叠,可以围成()A.三棱锥 B.三棱柱 C.五棱锥 D.五棱柱2、下列说法正确的是()A.六棱柱一共有六个面B.三棱锥恰有三条棱C.圆锥没有顶点D.用平面去截圆柱体截面不可能是三角形3、用半径为,圆心角是的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为(
)A.3 B.2 C.1.5 D.14、如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,若图中阴影部分恰是一个圆锥的侧面展开图,则这个圆锥底面圆的半径是(
)A.1 B.2 C.3 D.45、某一品牌的牛奶包装盒,该包装盒可以近似的看成是长方体,则它的展开图不可能是()A. B.C. D.6、下列说法错误的是()A.六棱柱有六个侧面,侧面都是长方形B.球体的三种视图均为同样大小的圆C.棱锥都是由平面围成的D.一个直角三角形绕其直角边旋转一周得到的几何体是圆锥7、将一个半径为10cm的半圆围成一个圆锥,则这个圆锥的底面半径为(
)A.5cm B.6cm C.7cm D.8cm8、将如图所示的三角形ABC沿着斜边AB旋转一周后可得一几何体,从正面看该几何体,所看到的形状图是(
)A. B. C. D.9、圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.60π B.80π C.96π D.120π10、将一个等腰三角形绕它的底边旋转一周得到的几何体为()A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、一个圆锥的底面半径为5,高为12,则这个圆锥的全面积是___________.(结果保留)2、用一个平面去截下列几何体:①圆柱;②正方体;③棱锥;④圆锥;⑤长方体;⑥球,其截出的面可能是圆的有_______.(填序号)3、已知圆锥的底面半径是20,母线长30,则圆锥的侧面积为________.4、圆锥的侧面积为,底面半径为6,则圆锥的母线长为______.5、10个棱长为ycm的正方体摆放成如图的形状,则这个图形的表面积为_____cm2.三、解答题(5小题,每小题10分,共计50分)1、我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是(单选);A. B.C. D.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列平面图形中,可能是该长方体表面展开图的有(多选)(填序号);(3)下图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,请聪明的你写出该长方体表面展开图的最大外围周长为.2、(1)解方程:x2﹣4=2x+2(2)如图,点A在⊙O上,OB,OC是半径,∠A=45°,OB=4,把扇形BOC的OC与OB重合围成一个圆锥,求该圆锥的底面的半径.3、如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数4、学习了“立体图形的构成”之后,善于思考的小颖同学随手将手中的一个边长分别为,长方形模具绕其中一条直角边旋转一周,得到了一个几何体.请你帮小颖同学计算出旋转后几何体的体积.5、如图是一个圆锥与其侧面展开图,己知圆锥的底面半径是1,母线长是4.(1)求这个圆锥的侧面展开图中∠ABC的度数.(2)如果A是底面圆周上一点,一只蚂蚁从点A出发,绕圆锥侧面一圈再回到A点,求这只蚂蚁爬过的最短距离.-参考答案-一、单选题1、C【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:C.【点睛】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.2、D【解析】【分析】根据圆锥、圆柱、棱锥、棱柱的形状特点判断即可.【详解】解:A、六棱柱一共有八个面,原说法错误,故此选项不符合题意;B、棱锥侧面有三条棱,原说法错误,故此选项不符合题意;C、圆锥有一个顶点,原说法错误,故此选项不符合题意;D、用平面去截圆柱体截面不可能是三角形,原说法正确,故此选项不符合题意.故选:D.【点睛】本题考查几何体的截面和圆锥、圆柱、棱锥、棱柱的特征.解题的关键要理解面与面相交得到线;线与线相交得到点.3、D【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为,根据圆锥的侧面展开的扇形的弧长等于圆锥底面周长可得,,解得.故选:D.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.4、B【解析】【分析】根据正六边形的外角,即可求得内角的度数,进而根据边长等于的半径,根据弧长公式求得,进而根据圆的周长公式就求得圆锥底面圆的半径【详解】解:正六边形ABCDEF的边长为6,,图中阴影部分恰是一个圆锥的侧面展开图,的长即为圆锥底面的周长,设圆锥底面圆的半径为,则解得故选B【点睛】本题考查了正多边形的内角与外角,求圆锥的底面半径,弧长公式,牢记弧长公式是解题的关键.5、C【解析】【分析】通过空间想象对四个选项依次判断是否能折成一个长方体.【详解】A:可以折成这样,故A项不符题意;B:可以折成这样,故B项不符合题意;C:左右两边一边宽,一边窄,竖起来之后不一样高,无法折成长方体,故B项符合题意;D:可以折成这样,故B项不符合题意.【点睛】本题考查长方体的展开图的判断,能通过空间想象把展开图折叠成长方体是本题关键.6、A【解析】【分析】根据棱柱,球体,棱锥,圆锥的形状进行判断即可.【详解】解:A、直六棱柱有六个侧面,侧面都是长方形,原说法错误,符合题意;B、球体的三种视图均为同样大小的圆,原说法正确,不符合题意;C、棱锥都是由平面围成的,原说法正确,不符合题意;D、一个直角三角形绕其直角边旋转一周得到的几何体是圆锥,原说法正确,不符合题意;故选:A.【点睛】本题考查了简单几何体,解题的关键是了解一些几何体的形状,难度不大.7、A【解析】【分析】根据圆的周长公式求出圆锥的底面周长,再根据圆的周长公式计算即可.【详解】解:圆锥的底面周长,则圆锥的底面半径,故选:A.【点睛】本题考查的是圆锥的计算,解题的关键是理解圆锥的底面圆周长是扇形的弧长.8、A【解析】【分析】根据平面图形旋转得立体图形、从不同方向看几何图形的性质分析,即可得到答案.【详解】根据题意,如图所示的三角形ABC沿着斜边AB旋转一周后可得一几何体,从正面看该几何体,所看到的形状图如下图:故选:A.【点睛】本题考查了立体图形的知识;解题的关键是熟练掌握平面图形旋转得立体图形、从不同方向看几何图形的性质,从而完成求解.9、A【解析】【分析】根据r=6,高h=8,可以求出圆锥母线为10,根据侧面积公式即可求出圆锥侧面积.【详解】解:如图所示,∵r=6,高h=8,∴由勾股定理得,L===10,∴侧面积S=πrL=60π.故选:A.【点睛】本题重点考查圆锥侧面积的计算方法,利用公式进行计算即可解本题.10、B【解析】【分析】根据面动成体的原理:将一个等腰三角形绕它的底边旋转一周得到的几何体为两个底面相等的圆锥.【详解】解:将一个等腰三角形绕它的底边旋转一周得到的几何体为两个底面相等的圆锥故选:B.【点睛】此题主要考查几何体的形成,解决本题的关键是掌握各种面动成体的体的特征.二、填空题1、90π【解析】【分析】根据圆锥的侧面展开图是扇形,底面是圆,先求得母线长,再分别求得面积,最后相加即可求得全面积.【详解】解:∵一个圆锥的底面半径为5,高为12,∴母线长为,则这个圆锥的全面积是故答案为:【点睛】本题考查了求圆锥侧面积,掌握圆锥侧面积公式是解题的关键.侧面积=π×底面半径×母线长,圆锥的表面积=底面积+侧面积.2、①④⑥【解析】【分析】根据圆柱、正方体、棱柱、球、圆锥、长方体的形状特点判断即可.【详解】解:在这些几何体中,②正方体,③棱锥和⑤长方体的截面不可能有弧度,所以一定不会截出圆;圆柱和圆锥中如果截面和底面平行是可以截出圆的,球体中截面都是圆,因此,①圆柱、④圆锥、⑥球能截出圆,故答案为:①④⑥.【点睛】本题考查了截面的形状问题.解题的关键是明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.3、600π【解析】【分析】直接利用圆锥的侧面积公式求出即可.【详解】依题意知母线长=30,底面半径r=20,则由圆锥的侧面积公式得S=πrl=π×20×30=600π.故答案为600π.【点睛】本题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.4、10【解析】【分析】根据侧面扇形的弧长等于底面圆的周长求出弧长,代入扇形面积公式即可求出圆锥的母线长.【详解】解:由题意得,设圆锥的母线长为R,,解得R=10,故答案为:10.【点睛】此题考查了圆锥的侧面扇形的弧长计算公式,扇形面积公式,熟记弧长与底面圆的关系的解题的关键.5、【解析】【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】解:由题意,画出这个图形的三视图如下:则这个图形的表面积是,故答案为:.【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.三、解答题1、(1)B(2)①②③(3)70【解析】【分析】(1)根据平面图形的折叠和立体图形的表面展开图的特点,正方体的展开图共有11种,只要对比选项,选出属于这11种的图的选项即可.(2)由平面图形的折叠和立体图形的表面展开图的特点解题,选出属于长方体展开图的项即可.(3)画出图形,依据外围周长的定义计算即可.(1)正方体的所有展开图,如下图所示:只有B属于这11种中的一个,故选:B.(2)可能是该长方体表面展开图的有①②③,故答案为:①②③.(3)外围周长最大的表面展开图,如下图:观察展开图可知,外围周长为,故答案为:70.【点睛】本题考察了平面图形的折叠和立体几何体的展开图,熟练掌握几何体的展开图的特征是解题的关键.2、(1)x1=+1,x2=-+1(2)1【解析】【分析】(1)先化简,再根据配方法即可求解;(2)利用圆周角定理求出∠BOC,求出弧BC的长,故可求出圆锥的底面的半径.【详解】(1)x2﹣4=2x+2x2﹣2x=6x2﹣2x+1=7(x-1)2=7x-1=±∴x1=+1,x2=-+1(2)∵∠A=45°,∴∠BOC=2∠A=90°∵OB=4,∴弧BC的长为设圆锥的底面的半径为r∴解得r=1∴圆锥的底面的半径为1.【点睛】此题主要考查解一元二次方程及圆锥的底面半径求解,解题的关键是熟知各自知识点的解法.3、120°【解析】【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.【详解】解:∵圆锥的底面半径为1,∴圆锥的底面周长为2π,∵圆锥的高是,∴圆锥的母线长为,设扇形的圆心角为n°,∴,解得:.即圆锥的侧面展开图中扇形的圆心角为120°.【点睛】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,且扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.理解题意,将扇形的弧长等于圆锥底面周长作为相等关系,列方程求解是解题关键.4、或【解析】【分析】分两种情况进行讨论,以边为轴和以边为轴旋转,根据圆柱体的体积公式求解即可.【详解】解:(1)以边长为的边所在直线为轴旋转一周,所得的圆柱底面半径是,高是,则它的体积为:(2)以边长为的边所在直线为轴旋转一周,所得的圆柱底面半径是,高是,则它的体积为:答:所得几何体的体积是或元.【点睛】此题考查了几何体的体积,解题的关键是分两种情况进行讨论并掌握几何体的体积公式.5、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电气系统节能改造案例分析
- 2026年造价控制与BIM技术的应用研究
- 2026春招:新能源面试题及答案
- 2026春招:祥鹏航空真题及答案
- 贷款模式课件
- 贴片机安全培训内容课件
- 货运安全培训教师课件
- 货车物流安全培训课件
- 医学美容行业服务礼仪解析
- 儿科护理安全与护理不良事件预防
- 低碳建筑成本控制方案设计
- 人工智能+灵活就业创新模式研究报告
- 冬季通信工程安全培训课件
- 板换式换热器施工方案
- 2025年中远海运招聘1189人(含社招)笔试参考题库附带答案详解
- (正式版)DB61∕T 1878-2024 《餐饮业油烟管道系统清洗规范》
- 水利水电工程单元工程施工质量验收标准 第4部分:堤防与河道整治工程
- 青鸟缆式线型感温火灾探测器JTW-LD-JBF4310施工指导及调试注意事项
- 肾病尿检知识培训课件
- 2025至2030中国水工金属结构行业发展趋势分析与未来投资战略咨询研究报告
- 《涉外法治概论》课件 杜涛 -第1-6章 涉外法治的基础理论-涉外经济管理法律制度
评论
0/150
提交评论