版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省丹东市第五中学2023年数学九年级第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.2.一个不透明的袋中装有2个红球和4个黄球,这些球除颜色外完全相同.从袋中随机摸出一个球,摸到黄球的概率是()A. B. C. D.3.如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A.2 B.3 C.4 D.54.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.5.如图,从半径为5的⊙O外一点P引圆的两条切线PA,PB(A,B为切点),若∠APB=60°,则四边形OAPB的周长等于()A.30 B.40 C. D.6.如图,在正方形中,点是对角线的交点,过点作射线分别交于点,且,交于点.给出下列结论:;C;四边形的面积为正方形面积的;.其中正确的是()A. B. C. D.7.如图,在正方形ABCD中,AB=2,P为对角线AC上的动点,PQ⊥AC交折线于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.8.小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2﹣2a2x+1的图象,则()A.l1为x轴,l3为y轴 B.l2为x轴,l3为y轴C.l1为x轴,l4为y轴 D.l2为x轴,l4为y轴9.下列函数,当时,随着的增大而减小的是()A. B. C. D.10.如图,在中,点,分别在,边上,,,若,,则线段的长为()A. B. C. D.5二、填空题(每小题3分,共24分)11.二次函数的图像开口方向向上,则______0.(用“=、>、<”填空)12.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果CD=4,那么AD•BD的值是_____.13.已知二次函数,当-1≤x≤4时,函数的最小值是__________.14.二次函数图象的顶点坐标为________.15.已知点A(a,1)与点B(﹣3,b)关于原点对称,则ab的值为_____.16.如图,在△ABC中,∠A=30°,∠B=45°,BC=cm,则AB的长为_____.17.如图,PA,PB是⊙O的两条切线,切点分别为A,B,连接OA,OP,AB,设OP与AB相交于点C,若∠APB=60°,OC=2cm,则PC=_________cm.18.如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.三、解答题(共66分)19.(10分)(1)用配方法解方程:x2﹣4x+2=0;(2)如图,在平面直角坐标系中,△ABC的顶点均在格点上,将△ABC绕原点O逆时针方向旋转90°得到△A1B1C1.请作出△A1B1C1,写出各顶点的坐标,并计算△A1B1C1的面积.20.(6分)如图,正方形的边长为9,、分别是、边上的点,且.将绕点逆时针旋转,得到.(1)求证:(2)当时,求的长.21.(6分)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).(1)画出关于点O成中心对称的,并写出点B1的坐标;(2)求出以点B1为顶点,并经过点B的二次函数关系式.22.(8分)某超市销售一种饮料,每瓶进价为元,当每瓶售价元时,日均销售量瓶.经市场调查表明,每瓶售价每增加元,日均销售量减少瓶.(1)当每瓶售价为元时,日均销售量为瓶;(2)当每瓶售价为多少元时,所得日均总利润为元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?23.(8分)如图,港口位于港口的南偏西方向,灯塔恰好在的中点处,一艘海轮位于港口的正南方向,港口的正东方向处,它沿正北方向航行到达处,侧得灯塔在北偏西方向上.求此时海轮距离港口有多远?24.(8分)教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶次,每次射靶的成绩情况如图所示.甲射靶成绩的条形统计图乙射靶成绩的折线统计图()请你根据图中的数据填写下表:平均数众数方差甲__________乙____________________()根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.25.(10分)为弘扬遵义红色文化,传承红色文化精神,某校准备组织学生开展研学活动.经了解,有A.遵义会议会址、B.苟坝会议会址、C.娄山关红军战斗遗址、D.四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.(1)统计图中______,______;(2)若该校有1500名学生,请估计选择基地的学生人数;(3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.26.(10分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【点睛】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.2、B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵地口袋中共有2+4=6个球,其中黄球3个,∴随机抽取一个球是黄球的概率是.故选B.考点:概率.3、B【解析】如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【详解】解:如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3,故选B.【点睛】本题考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键.4、C【解析】正面的数字是偶数的情况数是2,总的情况数是5,用概率公式进行计算即可得.【详解】从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选C.【点睛】本题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.5、D【分析】连接OP,根据切线长定理得到PA=PB,再得出∠OPA=∠OPB=30°,根据含30°直角三角形的性质以及勾股定理求出PB,计算即可.【详解】解:连接OP,∵PA,PB是圆的两条切线,∴PA=PB,OA⊥PA,OB⊥PB,又OA=OB,OP=OP,∴△OAP≌△OBP(SSS),∴∠OPA=∠OPB=30°,∴OP=2OB=10,∴PB==5=PA,∴四边形OAPB的周长=5+5+5+5=10(+1),故选:D.【点睛】本题考查的是切线的性质、切线长定理、勾股定理以及全等三角形的性质等知识,作出辅助线构造直角三角形是解题的关键.6、B【分析】根据全等三角形的判定(ASA)即可得到正确;根据相似三角形的判定可得正确;根据全等三角形的性质可得正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:四边形是正方形,,,,,,故正确;,点四点共圆,∴,∴,故正确;,,,故正确;,,又,是等腰直角三角形,,,,,,,,,,又中,,,,故错误,故选.【点睛】本题考查全等三角形的判定(ASA)和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA)和性质、相似三角形的性质和判定.7、B【分析】因为点P运动轨迹是折线,故分两种情况讨论:当点P在A—D之间或当点P在D—C之间,分别计算其面积,再结合二次函数图象的基本性质解题即可.【详解】分两种情况讨论:当点Q在A—D之间运动时,,图象为开口向上的抛物线;当点Q在D—C之间运动时,如图Q1,P1位置,由二次函数图象的性质,图象为开口向下的抛物线,故选:B.【点睛】本题考查二次函数图象基本性质、其中涉及分类讨论法、等腰直角三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8、D【分析】根据抛物线的开口向下,可得a<0,求出对称轴为:直线x=a,则可确定l4为y轴,再根据图象与y轴交点,可得出l2为x轴,即可得出答案.【详解】解:∵抛物线的开口向下,∴a<0,∵y=ax2﹣2a2x+1,∴对称轴为:直线x=a<0,令x=0,则y=1,∴抛物线与y轴的正半轴相交,∴l2为x轴,l4为y轴.故选:D.【点睛】本题考查了二次函数的性质,开口方向由a确定,与y轴的交点由c确定,左同右异确定b的符号.9、D【分析】根据各个选项中的函数解析式,可以判断出当x>0时,y随x的增大如何变化,从而可以解答本题.【详解】在y=2x+1中,当x>0时,y随x的增大而增大,故选项A不符合题意;在中,当x>0时,y随x的增大而增大,故选项B不符合题意;在中,当x>0时,y随x的增大而增大,故选项C不符合题意;在y=−x2−2x=−(x+1)2+1中,当x>0时,y随x的增大而减小,故选项D符合题意;故选:D.【点睛】本题考查一次函数的性质、反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,可以判断出当x>0时,y随x的增大如何变化.10、C【解析】设,,所以,易证,利用相似三角形的性质可求出的长度,以及,再证明,利用相似三角形的性质即可求出得出,从而可求出的长度.【详解】解:设,,∴,∵,∴,∴,∴,∴,,∵,,∴,∵,∴,∴,设,,∴,∴,∴,∴,故选C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.二、填空题(每小题3分,共24分)11、>【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>1.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a与抛物线的关系是解题的关键,图像开口方向向上,>1;图像开口方向向下,<1.12、1【分析】先由角的互余关系,导出∠DCA=∠B,结合∠BDC=∠CDA=90°,证明△BCD∽△CAD,利用相似三角形的性质,列出比例式,变形即可得答案.【详解】解:∵∠ACB=90°,CD⊥AB于点D,∴∠BCD+∠DCA=90°,∠B+∠BCD=90°∴∠DCA=∠B,又∵∠BDC=∠CDA=90°,∴△BCD∽△CAD,∴BD:CD=CD:AD,∴AD•BD=CD2=42=1,故答案为:1.【点睛】本题主要考查相似三角形的判定和性质,解决本题的关键是要熟练掌握相似三角形的判定和性质.13、-1【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x=1,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵−1≤x≤4,∴当x=1时,y取得最小值,此时y=-1,故答案为:-1.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.14、【解析】二次函数(a≠0)的顶点坐标是(h,k).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2).故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程中的h,k所表示的意义.15、-2【分析】根据两点关于原点对称,则两点的横、纵坐标都是互为相反数,可得a、b的值,根据有理数的乘法,可得答案.【详解】解:由点A(a,1)与点B(-2,b)关于原点对称,得
a=2,b=-1.
ab=(2)×(-1)=-2,
故答案为-2.【点睛】本题考查了关于原点对称的点的坐标,利用了关于原点对称的点的坐标规律是:横、纵坐标都是互为相反数.16、【分析】根据题意过点C作CD⊥AB,根据∠B=45°,得CD=BD,根据勾股定理和BC=得出BD,再根据∠A=30°,得出AD,进而分析计算得出AB即可.【详解】解;过点C作CD⊥AB,交AB于D.∵∠B=45°,∴CD=BD,∵BC=,∴BD=,∵∠A=30°,∴tan30°=,∴AD===3,∴AB=AD+BD=.故答案为:.【点睛】本题考查解直角三角形,熟练应用三角函数的定义是解题的关键.17、6【分析】由切线长定理可知PA=PB,由垂径定理可知OP垂直平分AB,所以OP平分,可得,利用直角三角形30度角的性质可得OA、OP的长,即可.【详解】解:PA,PB是⊙O的两条切线,由垂径定理可知OP垂直平分AB,OP平分,在中,在中,故答案为:6【点睛】本题主要考查了圆的性质与三角形的性质,涉及的知识点主要有切线长定理、垂径定理、等腰三角形的性质、直角三角形30度角的性质,灵活的将圆与三角形相结合是解题的关键.18、【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,依次得到∠AOB=∠BOB1=∠B1OB2=…=45∘,∴B1(0,),B2(−1,1),B3(−,0),…,发现是8次一循环,所以2019÷8=252…3,∴点B2019的坐标为(−,0)【点睛】本题考查了旋转的性质,对应点到旋转中心的距离相等;对应点与旋转中心所连接线段的夹角等于旋转角,也考查了坐标与图形的变化、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法.三、解答题(共66分)19、(1)x1=2+,x2=2﹣;(2)A1(﹣1,﹣1),B1(﹣4,0),C1(﹣4,2),△A1B1C1的面积=×2×2=2.【分析】(1)利用配方法得到(x﹣2)2=2,然后利用直接开平方法解方程;(2)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1;然后写出△A1B1C1各顶点的坐标,利用三角形面积公式计算△A1B1C1的面积.【详解】解:(1)移项,得x2﹣4x=﹣2,配方,得x2﹣4x+4=﹣2+4,即(x﹣2)2=2,所以x﹣2=±所以原方程的解为x1=2+,x2=2﹣;(2)如图,△A1B1C1为所作;A1(﹣1,﹣1),B1(﹣4,0),C1(﹣4,2),△A1B1C1的面积=×2×2=2.【点睛】本题主要考察作图-旋转变换、三角形的面积公式和解方程,解题关键是熟练掌握计算法则.20、(1)见解析;(2)7.1【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MDF=41°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=3,正方形的边长为9,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=x,可得出BF=BM﹣FM=BM﹣EF=12﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【详解】(1)∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°.∵∠EDF=41°,∴∠FDM=∠EDF=41°,在△DEF和△DMF中,∵,∴△DEF≌△DMF(SAS),∴EF=MF;(2)设EF=x,则MF=x.∵AE=CM=3,且BC=9,∴BM=BC+CM=9+3=12,∴BF=BM﹣MF=BM﹣EF=12﹣x.∵EB=AB﹣AE=9﹣3=6,在Rt△EBF中,由勾股定理得:EB2+BF2=EF2,即62+(12﹣x)2=x2,解得:x=7.1,则EF=7.1.【点睛】本题考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解答本题的关键.21、(1)图见解析,点;(2).【分析】(1)先由条件求出A点的坐标,再根据中心对称的性质求出、的坐标,最后顺次连接、,△OAB关于点O成中心对称的△就画好了,可求出B1点坐标.(2)根据(1)的结论设出抛物线的顶点式,利用待定系数法就可以直接求出其抛物线的解析式.【详解】(1)如图,点.(2)设二次函数的关系式是,
把(4,2)代入上式得,,即二次函数关系式是.【点睛】本题主要考查中心对称的性质,及用待定系数法求二次函数的解析式,难度不大.22、(1);(2)元或元;(3)元时利润最大,最大利润元【分析】(1)当每瓶售价为元时,每瓶售价增加1元,日均销售量减少80瓶,即可求解.(2)设每瓶售价为x元,根据题意表示出每瓶利润,日销售量,根据等量关系列方程解答即可.(3)设每瓶售价为a元,日均总利润为y元,求出y关于a的函数表达式,配方即可求解.【详解】(1)当每瓶售价为元时,每瓶售价增加1元,日均销售量减少80瓶,560-80=480瓶故答案为:480(2)设每瓶售价为x元时,所得日均总利润为元,根据题意得:解得:x1=12,x2=14答:当每瓶的售价为12元或14元时,所得日均总利润为元.(3)设每瓶售价为a元,日均总利润为y元,根据题意得:答:每瓶售价为13元时利润最大,最大利润1280元.【点睛】本题考查的是一元二次方程及二次函数的利润问题,解题关键在于对利润问题中等量关系的把握,由于计算量颇大,所以计算时要细心,避免出错.23、海轮距离港口的距离为【分析】过点C作CF⊥AD于点F,设CF=x,根据正切的定义用x表示出AF,根据等腰直角三角形的性质用x表示出EF,根据三角形中位线定理列出方程,解方程得到答案.【详解】解:如图,过点作于点.设,表示出利用,求出列方程:求出求出答:海轮距离港口的距离为.【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.24、(1)【答题空1】66(2)利用见解析.【分析】(1)先求出甲射击成绩的平均数,通过观察可得到乙的众数,再根据乙的平均数结合方差公式求出乙射击成绩的方差即可;(2)根据平均数和方差的意义,即可得出结果.【详解】解:(),乙的众数为6,.()因为甲、乙的平均数与众数都相同,甲的方差小,所以更稳定,因此甲的成绩好些.【点睛】本题考查了平均数、众数、方差的意义等,解题的关键是要熟记公式,在进行选拔时要结合方差,方差是用来衡
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险公司财务审核岗位面试题集
- 律师职位应聘的面试常见问题解析及回答策略
- 交通物流规划分析师面试问题集
- 高工面试题集及答案解析
- 2025年5G通信网络布局可行性研究报告
- 2026届浙江省七校联盟高三上学期一模历史试题(含答案)
- 2025年数字化营销在企业转型中的作用可行性研究报告
- 2025年城市绿地生态修复项目可行性研究报告
- 2025年旅游与运动结合的休闲项目可行性研究报告
- 协警服务协议书
- 2025年11月国家注册质量审核员(QMS)审核知识考试题(附答案)
- 2025年全国职业道德理论考试题库(含答案)
- 沼气回收合同范本
- 从库存积压到爆款频出:POP趋势网如何重塑女装设计师的工作逻辑1216
- 2025吐鲁番市高昌区招聘第二批警务辅助人员(165人)考试历年真题汇编带答案解析
- DRG支付改革下临床科室绩效优化策略
- 2026中央纪委国家监委机关直属单位招聘24人笔试备考题库含答案解析(夺冠)
- 平面包装设计创新创业
- 中国与东盟贸易合作深化路径与实践
- 烟酒店委托合同范本
- 加盟2025年房地产经纪协议合同
评论
0/150
提交评论