




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市江阴实验中学2023年九年级数学第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将抛物线y=2(x﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是()A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+42.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是()A.①③ B.②④ C.①③④ D.②③④3.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<24.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表。如图是一个根据北京的地理位置设计的圭表,其中,立柱的高为。已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)作为()A. B. C. D.5.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是()A.15° B.30° C.45° D.60°6.如图,在△ABC中,∠C=,∠B=,以点A为圆心,适当长为半径画弧,分别交AB,AC于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于P,作射线AP交BC于点D,下列说法不正确的是()
A.∠ADC= B.AD=BD C. D.CD=BD7.已知关于x的函数y=k(x+1)和y=﹣(k≠0)它们在同一坐标系中的大致图象是()A. B.C. D.8.如图所示的几何体是由六个小正方体组合而成的,它的俯视图是()A. B. C. D.9.如图,⊙O是△ABC的外接圆,连接OA、OB,∠C=40°,则∠OAB的度数为()A.30° B.40° C.50° D.80°10.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.在双曲线的每个分支上,函数值y随自变量x的增大而增大,则实数m的取值范围是________.12.如图,在矩形中,,以点为圆心,以的长为半径画弧交于,点恰好是中点,则图中阴影部分的面积为___________.(结果保留)13.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为cm.14.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到)15.在平面直角坐标系中,抛物线y=x2如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,过点A4作A4A5∥x轴交抛物线于点A5,则点A5的坐标为_____.16.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.17.如图在Rt△OAB中∠AOB=20°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=____.18.计算sin60°cos60°的值为_____.三、解答题(共66分)19.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.20.(6分)校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是多少米?21.(6分)用配方法解方程:x2﹣6x=1.22.(8分)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.23.(8分)如图,在阳光下的电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,同一时刻,竖起一根1米高的竹竿MN,其影长MF为1.5米,求电线杆的高度.24.(8分)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?25.(10分)求值:26.(10分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
参考答案一、选择题(每小题3分,共30分)1、A【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键.2、C【解析】①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.【详解】①四边形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正确).②设BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正确).综上所述,正确的有①③④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.3、B【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.4、D【解析】在Rt△ABC中利用正切函数即可得出答案.【详解】解:在Rt△ABC中,tan∠ABC=,∴立柱根部与圭表的冬至线的距离(即BC的长)为=.故选:D.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.5、B【解析】只要证明△OCB是等边三角形,可得∠CDB=∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.6、C【分析】由题意可知平分,求出,,利用直角三角形角的性质以及等腰三角形的判定和性质一一判断即可.【详解】解:在中,,,,由作图可知:平分,,故A正确,故B正确,,,,,故C错误,设,则,,故D正确,故选:C.【点睛】本题考查作图复杂作图,角平分线的性质,线段的垂直平分线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、A【分析】先根据反比例函数的性质判断出k的取值,再根据一次函数的性质判断出k取值,二者一致的即为正确答案.【详解】解:当k>0时,反比例函数的系数﹣k<0,反比例函数过二、四象限,一次函数过一、二、三象限,原题没有满足的图形;当k<0时,反比例函数的系数﹣k>0,所以反比例函数过一、三象限,一次函数过二、三、四象限.故选:A.8、D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是两个小正方形,
故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.9、C【分析】直接利用圆周角定理得出∠AOB的度数,再利用等腰三角形的性质得出答案.【详解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故选:C.【点睛】本题主要考查了三角形的外接圆与外心,圆周角定理.正确得出∠AOB的度数是解题关键.10、C【详解】解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.∴BG=1=6﹣1=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④正确.理由:∵S△GCE=GC•CE=×1×4=6,∵S△AFE=AF•EF=×6×2=6,∴S△EGC=S△AFE;⑤错误.∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠GAF=45°,∴∠AGB+∠AED=180°﹣∠GAF=115°.故选C.【点睛】本题考查翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质;勾股定理.二、填空题(每小题3分,共24分)11、m<﹣1【分析】根据在双曲线的每个分支上,函数值y随自变量x的增大而增大,可以得到m+1<0,从而可以求得m的取值范围.【详解】∵在双曲线的每个分支上,函数值y随自变量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案为m<﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质,解题的关键是明确题意,利用反比例函数的性质解答.12、【分析】连接EC,先根据题意得出,再得出,然后计算出和的面积即可求解.【详解】连接EC,如下图所示:由题意可得:∵是中点∴∴∴∴∴∴故填:.【点睛】本题主要考查扇形面积的计算、矩形的性质、解直角三角形,准确作出辅助线是关键.13、3【解析】∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l==6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,14、【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为10次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.1,故答案为:0.1.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.15、(﹣3,9)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得:或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得:或,∴A4(3,9),∴A5(﹣3,9),故答案为:(﹣3,9).【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.16、【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.17、80°.【分析】由将△OAB绕点O逆时针旋转100°得到△OA1B1,可求得∠A1OA的度数,继而求得答案.【详解】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°,∵∠AOB=20°,∴∠A1OB=∠A1OA﹣∠AOB=80°.故答案为:80°.【点睛】此题考查了旋转的性质.注意找到旋转角是解此题的关键.18、【分析】直接利用特殊角的三角函数值代入求出答案.【详解】原式=×.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三、解答题(共66分)19、(1)y=x2-2x-1.(2)M(1,-2).(1P(1,-4).【解析】分析:(1)根据抛物线的对称轴可求出B点的坐标,进而可用待定系数法求出抛物线的解析式;(2)由于A、B关于抛物线的对称轴直线对称,若连接BC,那么BC与直线x=1的交点即为所求的点M;可先求出直线BC的解析式,联立抛物线对称轴方程即可求得M点的坐标;(1)若∠PCB=90°,根据△BCO为等腰直角三角形,可推出△CDP为等腰直角三角形,根据线段长度求P点坐标.详解:(1)∵抛物线的对称轴为x=1,且A(﹣1,0),∴B(1,0);可设抛物线的解析式为y=a(x+1)(x﹣1),由于抛物线经过C(0,﹣1),则有:a(0+1)(0﹣1)=﹣1,a=1,∴y=(x+1)(x﹣1)=x2﹣2x﹣1;(2)由于A、B关于抛物线的对称轴直线x=1对称,那么M点为直线BC与x=1的交点;由于直线BC经过C(0,﹣1),可设其解析式为y=kx﹣1,则有:1k﹣1=0,k=1;∴直线BC的解析式为y=x﹣1;当x=1时,y=x﹣1=﹣2,即M(1,﹣2);(1)设经过C点且与直线BC垂直的直线为直线l,作PD⊥y轴,垂足为D;∵OB=OC=1,∴CD=DP=1,OD=OC+CD=4,∴P(1,﹣4).点睛:本题考查了二次函数解析式的确定、轴对称的性质以及特殊三角形的性质等知识,难度适中.20、2m【详解】解:设道路的宽为xm,(32-x)(20-x)=540,整理,得x2-52x+100=0,∴(x-50)(x-2)=0,∴x1=2,x2=50(不合题意,舍去),小道的宽应是2m.故答案为2.【点睛】此题应熟记长方形的面积公式,另外求出4块试验田平移为一个长方形的长和宽是解决本题的关键.21、x1=3﹣,x2=3+.【分析】根据配方法,可得方程的解.【详解】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x1=3﹣,x2=3+.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知配方法解方程.22、48mm【分析】设正方形的边长为x,表示出AI的长度,然后根据相似三角形对应高的比等于相似比列出比例式,然后进行计算即可得解.【详解】设正方形的边长为xmm,则AI=AD﹣x=80﹣x,∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴,即,解得x=48mm,∴这个正方形零件的边长是48mm.【点睛】本题主要考查了相似三角形判定与性质的综合运用,熟练掌握相关概念是解题关键.23、电线杆子的高为4米.【分析】作CG⊥AB于G,可得矩形BDCG,利用同一时刻物高与影长的比一定得到AG的长度,加上GB的长度即为电线杆AB的高度.【详解】过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===2,∴AB=AG+GB=2+2=4(米),答:电线杆子的高为4米.【点睛】此题考查了相似三角形的应用,构造出直角三角形进行求解是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.24、1.05里【分析】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【详解】∵EG⊥AB,FH⊥AD,HG经过点A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二级MySQL数据清理与维护技巧试题及答案
- 二级MySQL数据结构与查询试题及答案
- 四级软件测试考试常见误区试题及答案
- 提升测试文档准确性的有效方法与技巧试题及答案
- 电气行业法律法规解读考核试卷
- 教学地图绘制技术考核试卷
- 专注2025年软件测试核心试题及答案
- 网络技术考试的准备要点与建议试题及答案
- 数据库查询分析试题及答案解读
- 网络技术在项目中的应用试题及答案
- 环境因素识别评价表(一)
- 《三毛流浪记》作者简介张乐平
- 2023年山西建设投资集团有限公司招聘笔试题库及答案解析
- 铁皮石斛的抗氧化、保湿功效研究和应用现状
- GB/Z 18620.4-2008圆柱齿轮检验实施规范第4部分:表面结构和轮齿接触斑点的检验
- GB/T 97.1-2002平垫圈A级
- 泊 秦 淮唐 杜牧
- GB/T 1871.1-1995磷矿石和磷精矿中五氧化二磷含量的测定磷钼酸喹啉重量法和容量法
- GB/T 1725-2007色漆、清漆和塑料不挥发物含量的测定
- 公路工程工作总结范文
- 初中物理杠杆滑轮课件
评论
0/150
提交评论