版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
铁与干冰反应12引言热力学第一定律指出了万物变化中的能量守恒规律,热力学第二定律将进一步指出变化过程的方向和限度,亦即平衡的规律.由热力学第二定律证明状态函数熵的存在,引入两个辅助函数吉布斯函数和亥姆霍兹函数,相应得到三个平衡判据,用于在不同条件下判断过程的方向和限度.由热力学第三定律引入基础热数据“物质的标准摩尔熵”,还要介绍物质的标准摩尔生成吉布斯函数.介绍热力学基本方程及一些应用.热力学指明过程方向的必然趋势,但这种可能性能否实现,还要取决于动力学因素.3第一节自发过程的共同特征-不可逆性实践告诉我们,自然界一切自发过程都有确定的方向和限度。如水自发地从高水位流向低水位,直至两处水位高度相等为止;气体自发地从高压区流向低压区,直至压力相等为止;热量自发地从高温物体传向低温物体,直至两物体温度相等为止。这些都是自发过程,都具有变化方向的单一性。例如,气体向真空膨胀是一自发过程,在此膨胀过程中Q=0、W=0、△U=0,若要使膨胀后的气体恢复原状,经定温可逆压缩过程来完成,但在此过程中,环境必须对气体作功W,同时气体向环境放热Q,由热力学第一定律可知W=Q,即在体系恢复原状时,环境损失了功W,而得到热Q,要使环境也恢复原状,则取决于在不引起其他变化的条件下,热能否全部转变为功。4第一节自发过程的共同特征-不可逆性一切可能发生的宏观过程都是不可逆的!任何宏观过程进行后,若设法使系统状态复原,则在环境中留下的变化不外乎一定数量的功转化为热,和一定数量的热从高温处传到低温处.热力学第二定律指出,这两种变化都不可能简单复原,所以实际可能发生的过程都必然是不可逆的.而可逆过程是可能发生的过程的极限,也是可能发生的与不可能发生的过程的分界.所以,要判断过程能否发生及其能达到的限度,就要找出不可逆过程和可逆过程的判据.以下一连串精辟的逻辑推理,就要依据热力学第二定律,从可逆热机和不可逆热机的效率入手,以找到一个普遍存在的物理量来表征可逆过程和不可逆过程.5自发过程的共同特征-不可逆性过程名称动力方向限度功逆过程物体下落△h高→低h相等机械功起重机气体混合△P高→低P相等体积功抽气机温度均等△T高→低T相等机械功致冷机电压均等△E高→低E相等电功充电机实践经验告诉我们,自然界中热和功的转换也是不可逆的。功可以全部地转化为热;但热不能全部地转化为功。结论:一切自发过程,在热力学上都是不可逆的。6第二节热力学第二定律经验叙述克劳修斯说法:热从低温物体传给高温物体而不产生其它变化是不可能的.开尔文说法:从一个热源吸热,使之完全转化为功而不产生其它变化是不可能的.热力学第二定律是对第二类永动机的否定.(又要马儿跑,又要马儿只吃不拉是不可能的).致冷机可使热从低温物体传给高温物体,但同时使环境发生了电功转变为热的变化.理想气体恒温膨胀,系统从热源吸的热全转变为对环境作的功,但同时系统的状态发生了变化(膨胀了).上述两种说法完全等价.假设克氏说法不成立,就可以将热机放给低温热源的热简单地返还给高温热源,总的结果是从高温热源吸热完全转化为功,这样开氏说法也就不成立了.7第三节卡诺循环与卡诺定理蒸气机发展史上研究热机效率的初衷,只是寻求解决热功转化的方向和限度问题,未料推动了热力学第二定律的建立.1824年CarnotNLS提出热机效率有一个极限;ClausiusRJE和KelvinL分别于1850年和1851年得出了热力学第二定律.物质形态的变化与能量形式的转化总是密不可分的.尽管万物之变千差万别,但若能找出热功转化的限度,就能找到变化方向和限度的普遍原理.正所谓“势不同而理同”(唐·柳宗元).过程中伴随热从高温向低温的传递过程中伴随功向热的转化8一、卡诺循环卡诺循环:以理想气体为工作介质,按恒温可逆膨胀;绝热可逆膨胀;恒温可逆压缩;绝热可逆压缩的步骤组成的循环.循环过程
U=0W=Q=Q1+Q29卡诺
Sadi
Carnot(French,1790-1832)
摄于1813年,时年是Ecole
理工专科学校
一年级学生.1824年发表论文“论火的动力”,提出热机效率有一个极限.10二、卡诺定理热机效率:卡诺定理:所有工作于两个温度一定的热源之间的热机,以可逆热机的效率为最大.证明:令两机联合运转,其中可逆机逆向循环(致冷机),
因可逆,每步的功和热只改变正负号,而大小不变.调整|Q2|=|QR2|,则低温热源状态变化抵消.
假设
IR>
R,则|W|>|WR|,|Q1|>|QR1|,总结果是高温热源放出的热全部用于对环境作功,这显然违反了开尔文说法.卡诺定理的推论:所有工作于两个温度一定的热源之间的可逆热机,其热机效率必相等,与工质或变化的种类无关.证明:以热机效率不等(假设)的两可逆机联合,其中热机效率低者逆转.结果同样违反开尔文说法,可知假设为谬.11第四节熵的概念—熵与熵增原理热温商:热与环境温度之商.可逆循环T=Tamb
卡诺循环的热温商之和等于零,
那么,对任意可逆循环过程呢?对任意可逆过程呢?先证明任意可逆循环的热温商之和也为零.12第四节熵的概念—熵与熵增原理pV任意可逆循环的分割12ab图2-4为一任意可逆循环过程。整个折线循环的总热温商(等于各个小卡诺循环的热温商相加)为零.当折线取得无限多时,就无限趋近于曲线循环.故再将循环分成途径a(12)和b(21),有13熵的定义这个状态函数由克劳修斯于1865年定义为熵,以S表示之.式中
QR为可逆热,T为可逆换热
QR时体系的温度.熵是一个状态函数,是一个广延性质.熵的变化等于可逆过程(!)的热温商,具有能量
温度
1的量纲,单位J
K1.在始、终态确定的条件下,分别经可逆途径和不可逆途径,熵变值必相等.14二、不可逆循环过程与不可逆过程的热温商同理可推导出,
任意不可逆循环的热温商之和小于零.<任意不可逆循环
=任意可逆循环Tamb=T将一任意过程与一可逆途径组成一个循环,则有12任意可逆克劳修斯不等式>不可逆过程=可逆过程Tamb=T<不可能可见,对任意过程,可通过比较过程的热温商与熵变的大小来判断其可逆性.两者相等为可逆过程,熵变较大为不可逆,熵变较小则不可能.故上式是一个有普遍意义的可逆性判据.15熵增原理无限小过程的克劳修斯不等式运用于孤立体系
(
Q=0):>不可逆(可能)=可逆<不可能熵增原理
孤立体系中若进行不可逆过程,则体系的熵必定增大;若进行的是可逆过程,则体系的熵不变;不可能发生体系的熵减少的过程.
绝热过程
Q=0,dSQ=0
0说明不可逆绝热过程的熵必定增大,可逆绝热过程的熵不变,不可能发生熵减少的绝热过程.16熵的物理意义体系的状态函数熵是量度体系混乱度的函数.孤立体系内的一切可能发生的变化均朝熵增大的方向进行,也就是朝体系混乱度增大的方向进行.子弹撞击钢板的瞬间,子弹的有序运动能量转变为热量,使温度升高,即微观的无序热运动增强.此过程不可能逆向发生.高锰酸钾溶于水,体系混乱度增加.结构高度有序的晶体溶于水,体系的混乱程度大大增加了.17第六节热力学第二定律的本质--熵的统计意义功转变为热的过程,从微观上看是分子作有序定向运动的能量向作无序热运动的能量转化,这种熵增的过程是没有限制的.反之,单纯热转化为功的过程是熵减过程,不可能简单发生.
热机工作时,高温热源放热并推动功源作有序运动,混乱度减小;同时必须有一低温热源吸收热量,其混乱度增大,并且必须超过前者的减小.在统计力学中,体系混乱度用一定宏观状态对应的微观状态总数
(亦称热力学概率)来表征,并用下式来定义熵:玻耳兹曼关系式
S=kln
熵的本质:体系的微观状态数越多,热力学概率越大,体系越混乱,熵就越大.18熵的杂谈T.Clausius
于1854年提出熵(entropie)的概念,我国物理学家胡刚复教授于1923年根据热温商之意首次把entropie译为“熵”.A.Einstein曾把熵理论在科学中的地位概述为“熵理论对于整个科学来说是第一法则”.C.P.Snow在其“两种文化与科学革命”一书中写道:“一位对热力学一无所知的人文学者和一位对莎士比亚一无所知的科学家同样糟糕”.熵定律确立不久,J.C.Maxwell就对此提出一个有名的悖论,试图证明一个孤立体系会自动由热平衡状态变为不平衡.T1=T2实际上该体系通过麦克斯韦尔的工作将能量和信息输入到所谓的“孤立体系”中去了.这种体系实际是一种“自组织体系”.T1<T219熵的杂谈1854年,H.F.Helmholtz在一次演讲中谈到:热力学第二定律意味着整个宇宙将处于温度均匀的状态,并且,“自此以后,宇宙将陷入永恒的静止状态”.热死论由此而生.现代物理学认为宇宙是一个自引力体系,这种体系的物质具有负热容;热平衡状态的微小波动产生的微小的温度差,将引起高温物质放热而具有更高的温度,低温物质因吸热则反之,这种变化方向正好与熵定律指出的方向相反.以熵原理为核心的热力学第二定律,历史上曾被视为堕落的渊薮.美国历史学家H.Adams(1850-1901)说:“这条原理只意味着废墟的体积不断增大”.有人甚至认为这条定律表明人种将从坏变得更坏,最终都要灭绝.热力学第二定律是当时社会声誊最坏的定律.人类社会实质上不同于热力学上的孤立体系,而应是一种“自组织体系”.20可逆相变:在无限趋近相平衡的条件下进行的相变化.在大气压下,冰与水在0℃
时达平衡纯物质可逆相变p<pvap蒸发p=pvap平衡
p>pvap冷凝
相平衡Br2(l)Br2(g)I2(s)I2(g)B()T,pB()
T,pT,p为平衡温度压力由于
fusHm>0,
vapHm>0,故同一物质Sm(s)<Sm(l)<Sm(g)物质状态的混乱度s<l<g21不可逆相变:不在无限接近相平衡的条件下进行的相变过程.
不可逆过程的热温商小于系统的熵变,故要在始末态间设计一条可逆途径,用其热温商计算不可逆相变过程的熵变.纯物质不可逆相变
S(T2)
=
S(T1)
+
S(l)
+
S
(g)
S(l)
可逆升温H2O(l,100℃,101.325kPa)
S(T2)=?不可逆相变H2O(l,90℃,101.325kPa)H2O(g,90℃,101.325kPa)
S(g)
可逆降温
S(T1)可逆相变H2O(g,100℃,101.325kPa)得相变熵与温度的关系:22标准摩尔反应熵
:在一定温度T下,反应物和生成物都处于标准态时,单位反应进度的反应引起的熵变.标准摩尔熵和标准摩尔反应熵如对反应0=
aA
bB+yY+zZ物质的标准摩尔熵
:处于标准态的物质B的摩尔熵,与物质本性和温度有关.是物质的重要特性.由于绝大部分化学反应无法做到可逆地进行,所以用可逆热温商来计算化学反应的熵变缺乏可行性.基于热力学第三定律,人们能够赋予物质的标准摩尔熵一个规定值,从而按照上述定义式就能计算标准摩尔反应熵.23能斯特热定理:凝聚系统在恒温化学变化过程中的熵变随着绝对温度趋于0K而趋于零.(1906年)上式方括号内是1mol物质B从
0K升温至T
的熵变,其间可能包括一系列恒压升温和可逆相变,对于纯物质B,这两种过程的熵变可以分别根据定压热容和相变焓等热数据求出,从而计算出任一温度下的标准摩尔反应熵.那么在任一温度T下反应0=
B
BB的标准摩尔反应熵:能斯特热定理WalterNernst(1864—1941)aGermanphysicistandchemistknownespeciallyforhisworkrelatedtothethirdlawofthermodynamics.24普朗克假设:凝聚态纯物质在0K时的熵值为零.(1912年)晶体的两种点缺陷0K时完美晶体中所有分子,原子或电子的运动都处于最低能级,空间排列只有一种方式,所以从微观上看只在一种状态,熵值定为零,可算是“有序之极”了.热力学第三定律:0K时纯物质完美晶体的熵为零.热力学第三定律水的3种相态中,熵的相对大小是与其分子无序程度的高低一致的,其中固体的熵和无序度最小.随着固体温度的一步步降低至绝对零度,可以预期在温度尺度上熵将降低至最小值.该式中的标准摩尔熵已演变为以0K为基准的相对值.MaxLarlErnstLudwigPlank(1858—1947).Thedeepinterestinthermodynamicsledhimeventuallytothe“ultravioletcatastrophe”andtohisrevolutionaryhypothesis.ThediscoverywasannouncedtwoweeksbeforeChristmasin1900,andhewasawardedtheNobelPrizein1918.250K附近的Cp,m可用德拜公式计算:标准摩尔熵规定值的获得其中升温步骤的
S可由实测的Cp,m/T~T曲线用图解积分法获得.铂的Cp,m/T~T曲线常见错误:将标准熵写成
以0K时完美晶体的熵为零作为起点,计算出1mol纯物质B在温度为T的标准态时的熵.
如对某气态物质,26根据熵的定义式,由可逆过程的热温商可求得
S.对实际的不可逆过程,须在始末态之间设计一条可逆途径.凝聚态物质pVT过程熵变的计算对凝聚态物质pVT
过程态1T1,S1态2T2,S2不可逆可逆恒压变温变温恒温(压力变化不大)(压力变化不大)27恒压气体pVT过程熵变的计算任意恒温恒容28对理想气体的混合过程,由于分子间无作用力,各组分的状态不受其它组分影响,故可分别按纯组分计算熵变,然后对各组分加和.定性小结:物质的温度升高,其熵值随之增大.物质(气体)因减压而体积增大,其熵随之增大.物质(气体)之间的混合,导致系统的熵增大.物质之间的传热,导致各物质的总熵增大.
以上熵增大过程伴随着微观分子无序热运动速率或空间的增大,即物质状态的混乱程度增大了.例9例10气体pVT过程熵变的计算29>不可逆=可逆熵增原理因此还必须计算环境的熵变.环境的温度可视为恒定;环境内部的变化可认为是可逆的;环境吸、放的热等于系统放、吸的热;特别提醒!对封闭系统,必须用系统和环境的总熵来判断变化的可能性.熵判据的应用条件是隔离系统!例11例12环境熵变的计算30亥姆霍兹函数<可能=平衡亥氏函数判据:在恒温恒容时,能发生亥氏函数减小(
)而对外做少于该减小值的非体积功(
)的过程;或亥氏函数增大同时外界提供多于该增大值的非体积功的过程;可逆时亥氏函数变与非体积功相等.在恒温恒容不做非体积功时,过程只能自发地向亥氏函数减小的方向进行,直到最小值时达到平衡.亥姆霍兹函数克劳修斯不等式dS
Q/T
amb
0不做非体积功恒温
Q
d(TS)0d(U
TS)W
<不可逆=可逆恒容<不可逆=可逆
Q
=dU
W31J.WillardGibbs(1838-1903),他提出和发展了自由能的概念.Gibbs1883年在Yale大学获Ph.D,并是该校的教员.WillardGibbs于1858年,时年他是Yale大学的毕业生.吉布斯函数32吉布斯函数吉布斯函数恒压
Q
=dU
(W
pdV
)克劳修斯不等式dS
Q/T
amb
0不做非体积功恒温
Q
d(TS)0d(U+pV
TS)W
<可能=平衡<不可逆=可逆吉氏函数判据:在恒温恒压时,能发生吉氏函数减小(
)而对外做少于该减小值的非体积功(
)的过程;或吉氏函数增大同时外界提供多于该增大值的非体积功的过程;可逆时吉氏函数变与非体积功相等.在恒温恒压不做非体积功时,过程只能自发地向吉氏函数减小的方向进行,直到最小值时达到平衡.33(2)
G的物理意义HCl(g)HCl(aq)过程的G<0,有对外作非体积功的能力,使锥形瓶里的水快速喷向盛有HCl(g)的烧瓶吉布斯函数34A和
G都是人为组合的状态函数,是系统的广延性质,具有能量单位,绝对值未知.A和
G
本身无明确的物理意义,之所以定义它们是为了得到在两个常见反应条件下使用方便的判据.任何过程都会使状态函数A和
G发生变化:
A=
U-
(TS);
G=
H-
(TS)
注意:
(TS)=(TS)2-(TS)1
但只有在判据条件下的
A和
G的大小才能用作判据.自发过程:诸如
AT,V<0或
GT,p<0的无须外界做功的过程.故在不做非体积功时的可能性判据也是自发性判据.
A和
G的物理意义:
AT=WR;
AT,V=W
R;
GT,p=W
R.对亥姆霍兹函数和吉布斯函数的说明35热力学基本方程至此已引出U,H,S,A,G等状态函数,连同可以直接测量的p,V,T,它们的变化可以用基本方程联系起来.本节先介绍组成恒定的均相封闭系统的热力学基本方程.组成恒定的均相封闭系统只需两个独立状态变量来确定其状态,有如下广义的状态方程及全微分式:U=U(S,V);H=H(S,p);A
=A(T,V);G=G(T,p)以上各式显然对可逆过程和不可逆过程同样适用.为方便起见,以可逆过程为例来推导式中各项偏导数的值.36可逆,不做非体积功时
QR=TdS,
WR=
pdVdU
=
QR+
WR=TdS
pdVdH
=d(U+pV)=dU
+pdV+Vdp=TdS+VdpdA
=d(U
TS)=dU
TdS
SdT=
SdT
pdV
dG
=d(H
TS)=dH
TdS
SdT=
SdT+Vdp组成恒定的均相封闭系统热力学基本方程dU
=TdS
pdVdH
=TdS
+VdpdA
=
SdT
pdVdG
=
SdT
+Vdp热力学基本方程得到热力学基本方程是第一定律和第二定律的综合,包含有热力学理论的全面信息,是热力学理论框架的中心.上述方程没有将物质的量列为状态变量,所以对有相变化和化学变化的多相封闭系统,要求相变化和化学变化已达到平衡.37吉布斯-亥姆霍兹方程吉布斯-亥姆霍兹方程
:表示一定量物质的A
和G
随温度的变化.38若Z=f(X,Y),且Z有连续的二阶偏微商,则必有将此关系应用于热力学基本方程,得麦克斯韦关系式利用后两式可用易测的变化率替代难以直接测量的变化率.麦克斯韦关系式39热力学关系式的证明由dH=
TdS+Vdp
得40
海洋是一个多组分系统41实际系统绝大多数为多组分系统或变组成系统,必须掌握处理多组分系统的热力学方法.多组分均相系统混合物各组分等同对待溶液区分溶剂和溶质气态混合物液态混合物l1+l2+…固态混合物(相平衡章)液态溶液l+(l
,s,g)固态溶液(相平衡章)理想液态混合物真实液态混合物理想稀溶液真实溶液电解质溶液在电化学章讨论.引言42单组分纯物质,系统的广延性质V,U,H,S,A,G等都有其相应的摩尔量:
摩尔体积
摩尔热力学能
摩尔焓
摩尔熵
摩尔亥姆霍兹函数
摩尔吉布斯函数但在液态混合物或溶液中,单位量组分B的VB,
UB,HB,SB,AB,GB
与同温同压下单独存在时相应的摩尔量通常并不相等.问题的提出43例如,25℃,101.325kPa时,1摩尔58.35cm3C2H5OH(l)和1摩尔18.09cm3H2O(l)混合后体积减少了2.04cm3.表明V(H2O,l)≠Vm*(H2O,l);V(C2H5OH,l)≠Vm*(C2H5OH,l).
解释:不同组分的分子的结构,大小和性质不同,使纯态(B-B,C-C)和混合态(B-B,C-C,B-C)的分子间距不同(涉及V等),分子间相互作用能也不同(涉及U,H,S,A,G等).因此,需用偏摩尔量的概念取代纯物质的摩尔量.18.09cm3H2O*(l)58.35cm3C2H5OH*(l)74.40cm3H2O
C2H5OH(l)VH20=17.0cm3/molVC2H5OH=57.4cm3/mol问题的提出44实验还表明,水和乙醇的偏摩尔体积还与混合物的组成有关.只有在一定温度,压力和确定组成的混合物中,各组分才有确定的偏摩尔体积.为此,有如下偏摩尔体积的定义:在一定温度,压力下,1mol组分B在确定组成的混合物中对体积的贡献值VB
,等于在无限大量该组成的混合物中加入1molB引起的系统体积的增加值;也等于在有限量的该组成的混合物中加入dnB的B引起系统体积增加dV
折合成加入1molB时的增量,用数学式表示:问题的提出动画“偏摩尔体积”45以X代表V,U,H,S,A,G这些广延性质,对多组分系统X=f(T,p,nB,nC,…)偏摩尔量偏摩尔量XB
:在恒温恒压和除B组分以外其它组分的含量都不变的条件下,广延性质X随B组分物质的量的变化率.各种偏摩尔量都是系统的状态函数,都与温度、压力和组成有关.偏摩尔量46偏摩尔体积偏摩尔热力学能偏摩尔焓偏摩尔熵偏摩尔亥氏函数偏摩尔吉氏函数注意各偏导数的下标!!!在其它任何条件下的变化率都不是偏摩尔量!偏摩尔量47将XB代入前述全微分式,得若dT=0,dp=0则若各组分按一定比例同时微量地加入以形成混合物,则XB为常数,从nB
=0到nB=nB积分上式,得如,V=nBVB+nCVC+…U=nBUB+nCUC+…偏摩尔量偏摩尔量的集合公式:48以二组分的偏摩尔体积为例.斜率法:向一定量nC
的液态组分C中不断加入组分B,测出不同nB
时的混合物的体积V,作
V-nB
曲线.
由曲线上某点的切线斜率得到相应组成(xB)下VB,再用集合公式求出VC:
VC=(V-nBVB)/nC.截距法:作
Vm-xB
曲线,在曲线上任一点作切线,与两边纵坐标的交点就是两个组分的偏摩尔体积.偏摩尔量的测定法举例至于UB,HB,
AB,GB等,只能得到其变化值.49若为B,C二组分混合物或溶液,则xBdXB=–xCdXC可见,当混合物组成发生微小变化,如果一组分的偏摩尔体积增大,则另一组分的偏摩尔体积一定减小.
恒温恒压下对集合公式吉布斯-杜亥姆(Gibbs-Duhem)方程求全微分,得吉布斯-杜亥姆方程50混合物或溶液中同一组分,它的不同偏摩尔量之间的关系与纯物质各摩尔量间的关系相同.如HB=UB+pVBAB=UB-TSBGB=HB-TSB=UB+pVB-TSB=AB+pVB偏摩尔量之间的函数关系51化学势组成可变的均相多组分系统,G=f(T,p,nB,nC……)与组成不变系统的热力学基本方程dG
=-SdT
+Vdp
对比,得到组成可变的均相多组分系统U=G–pV+TSH=G+TS
A=G–pV此即组成可变的均相多组分系统热力学基本方程52组成可变的多相多组分系统每一相都满足上述热力学基本方程.因广延性质具有加和性,整个系统的广延性质应为各相的广延性质之和,所以,当各相的T,p都相同时,对整个系统有式中各广延性质的系统总值与各相的值的关系为:53多相多组分系统发生相变化或化学变化时,根据亥氏和吉氏函数判据,可得化学势判据:化学势判据及应用举例54则dG
=0,组分B在α,β两相中达成平衡.化学势判据应用于相变化:在一定T,p下,若则dG
<0,组分B有从α相转移到β相的自发趋势.若考虑多组分
,两相系统,若组分B有dnB由相转移到相,有结论:在恒温恒压下若任一物质B在两相中的化学势不相等,则该组分必然从化学势高的那一相向化学势低的那一相转移,即朝着化学势减小的方向进行:若每一组分在两相的化学势都分别相等,则两相处于平衡状态.化学势判据及应用举例55理想气体的化学势标准化学势
:
物质B在标准态下的化学势.特别提醒:任何状态的组分B的化学势都将以其同温下的标准化学势为基准来表示.尽管
的绝对值仍未知,但下章将要学习的化学平衡规律只须知道下列加和值:先考虑纯理想气体B,使之从标准压力恒温变化到压力p,对混合理想气体中的B组分,则有56为了使真实气体混合物中B组分的化学势表达式具有与理想气体组分相同的简单形式,路易斯引入了逸度的概念.气体B的逸度
是在T,p下满足如下方程的物理量:可见,逸度及逸度因子对纯气体B,逸度因子
:逸度具有压力单位,逸度因子没有单位.对理想气体
B=1.570p
pp定温T理想气体真实气体理想气体和真实气体的逸度
–压力
关系及标准态在温度T下,无论是理想气体还是实际气体,其标准态都是理想气体直线上的红点处,而不是真实气体曲线上蓝点.红点状态和蓝点的化学势都等于标准化学势,但只有红点才具有标准摩尔焓,标准摩尔熵等标准热力学函数值.逸度及逸度因子58逸度因子的计算及普遍化逸度因子图普遍化逸度因子图:不同Tr下的
-pr曲线.根据对应状态原理,不同气体在同样的对比温度Tr
,对比压力pr下,有大致相同的压缩因子,因而亦有大致相同的逸度因子.59若混合气体中组分B的偏摩尔体积等于它单独存在于混合气体的温度压力时的摩尔体积,则其逸度因子等于它在混合气体温度压力下单独存在时的逸度因子.路易斯-兰德尔逸度规则:真实气体混合物中组分B的逸度等于该组分在混合气体的温度和总压下单独存在时的逸度与该组分在混合物中摩尔分数的乘积.该规则适用于混合气体压力不太大的情况.路易斯-兰德尔逸度规则60纯真实气体的化学势对纯态真实气体,设计如下恒温途径:B(pg,p
)B(g,p)
GmB(pg,p)B(pg,p0)dTG
=Vdp61真实气体混合物中任一组分的的化学势B(pg,p
)B(g,mix,pB=yBp
)
B
(g)
GBB(pg,mix,pB=yBp
)B(pg,mix,p0)此即气态组分B的化学势普遍式.62若溶质B,C,…均不挥发,则p=pA由组分A,B,C,…组成的气、液两相平衡系统.
pgpA
pB
pC
yA
yB
yC
xA
xB
xC
T一定液态混合物和溶液的气,液平衡l气相总压力拉乌尔定律拉乌尔定律:稀溶液中溶剂A的蒸气分压等于同一温度下纯溶剂的饱和蒸气压p*A与溶液中溶剂的摩尔分数xA的乘积.适用条件:稀溶液(严格地说是理想稀溶液)中的溶剂.63开启易拉罐后,压力减小,CO2气体的溶解度随之减小,从液体中释放出来.亨利定律:一定温度下,稀溶液中任一挥发性溶质B在平衡气相中的分压力pB与它在平衡液相中的摩尔分数xB成正比.kx,B
亨利常数,与温度
及溶剂、溶质的特性有关.pB
=kx,BxB热玻棒插入碳酸饮料中,亨利常数随之增大,CO2气体从液体中释放出来.亨利定律其它形式:64溶剂分子溶质分子微观图像拉乌尔定律和亨利定律的微观解释稀溶液中,溶质分子数目很少.溶剂:每个溶剂分子进入气相的概率(或难易程度)由A-A分子间力决定;但由于溶质占据了部分溶剂分子位置,导致溶剂的蒸气压按比例(xA
)下降.挥发性溶质:
每个溶质分子B进入气相的概率(或难易程度)由B-A分子间力决定,那么进入气相的全部B分子数目(分压)就仅取决于液相中B分子的数目(浓度).而在非稀溶液中,每一溶剂分子进入气相的难易程度取决于A-A和A-B两种分子间力,每一溶质分子进入气相的难易程度取决于B-A和B-B两种分子间力,而两种作用力的相对贡献大小是随浓度而变的.65p01AxB
B稀溶液区稀溶液区pA=f(xB)pB=f(xB)pB*kx,ApA=kx,AxApA*pA=
pA*
xApB=
pB*
xBkx,BpB=kx,BxB拉乌尔定律和亨利定律的对比66理想稀溶液:一定温度下,溶剂A和溶质B分别服从拉乌尔定律和亨利定律的无限稀薄溶液.理想稀溶液的气-液平衡
溶剂分子溶质分子xA
xB
pA
pB
稀溶液中溶剂的化学势理想稀溶液的溶剂与理想混合物中任一组分同样遵守拉乌尔定律,并规定了同样的标准态,因而具有相同的化学势表达式.通常可以忽略积分项,可以证明,67设有一组成为bB
理想稀溶液,在T,p下达到气-液两相平衡,由相平衡条件,若蒸气为理想气体,则有pB
=kb,BbB稀溶液中溶质的化学势b
=1molkg1.式中前两项为bB
=b
的理想稀溶液中的溶质B
的化学势
(简记作
B
).溶质B的标准态:压力为
p
,bB
=b
的理想稀溶液中的溶质B(假想态).标准化学势记作.通常可忽略积分项,68溶液的组成用cB
表示时,亨利定律
pB
=kc,B
cB式中溶质B的标准态:温度为T,压力为p
,其物质的量浓度cB
=c
的理想稀溶液中的溶质B(假想态).通常压力下其它组成标度表示的溶质的化学势溶液的组成用xB
表示时,亨利定律pB
=kx,B
xB式中溶质B的标准态:温度为T,压力为p
,其物质的量浓度xB
=1的理想稀溶液中的溶质B(假想态).通常压力下69其它组成标度表示的溶质的化学势溶质化学势的3种表达式对非挥发性溶质同样适用.适用于理想稀溶液,对一般稀溶液中的溶质也近似适用.3种表达式的采用的浓度不同,标准化学势的大小也不同,但确定组成的稀溶液中的溶质的化学势不随组成表示方式而变.挥发性溶质3种标准态示意图如下:pB标准态:T,p
,bB=b
,pB
=kb,BbB(红点)
对应的实际态:T,p
,bB
=b
,pB≠kb,BbB(白点)
pBpB70碘在水和四氯化碳中的分配平衡(左)刚加入的碘溶入水层(右)碘在两液层中达平衡能斯特分配定律:在一定温度和压力下,当溶质在共存的两不互溶液体间成平衡时,若所形成的溶液的浓度不大,则溶质在两液相中的浓度之比为一常数.分配平衡时,溶质在两相中化学势相等:此式要求溶质在两相中的浓度不大,且在两相中的分子形式相同.萃取动画演示溶质的化学势表示式应用举例——分配定律71理想液态混合物:理想液态混合物中任意组分B在全部组成范围内都遵守拉乌尔定律pB=pB*xB.理想液态混合物中各组分间的分子间作用力与各组分在混合前纯组分的分子间作用力相同(或几近相同).理想液态混合物中各组分的分子体积大小几近相同.近于理想混合物的实际系统:H2O与D2O等同位素化合物,C6H6与C6H5CH3等相邻同系物,正己烷与异己烷等同分异构物,Fe-Mn等周期系中相邻金属组成的合金.理想液态混合物72理想液态混合物在T,p下与其蒸气呈平衡,
gppB
pC
pD
xB
xC
xD
l
T一定理想液态混合物的气-液平衡每一组分均满足pB
=p*BxB
理想液态混合物中任一组分的化学势通常可忽略积分项,有理想混合物中任一组分B的标准态:同样温度T,压力p
下的纯液体.标准化学势记为.73多个组分在恒温恒压下混合形成理想混合物:理想液态混合物的混合性质(1)mixV
=0(2)mixH
=0(3)mixS
=-R
nBlnxB
>0(4)mixG
=RT
nBlnxB
<0由
G=H-T
S即得上式.后两性质均表明混合是自发的.74稀溶液的依数性:稀溶液具有的某些性质仅与一定量溶液中溶质的质点数有关而与溶质的本性无关.由拉乌尔定律可知
即溶剂蒸气压下降值
p与溶质的摩尔分数成正比,比例系数为同温下纯溶剂的饱和蒸气压.密闭容器内,
纯溶剂的蒸气压比溶液中溶剂蒸气压高而不能达到两液相的平衡.容器内气相中溶剂蒸气相对于纯溶剂未饱和,相对于溶液中的溶剂又是过饱和.溶剂蒸气压下降75凝固点降低(析出固态纯溶剂)凝固点降低:溶剂A和溶质B组成稀溶液,若两者不生成固溶体,则从溶液中析出固态纯溶剂的温度,就会低于纯溶剂A在同样外压下的凝固点.稀溶液的凝固点下降公式将均相的红色染料水溶液降温,溶剂(水)沿管壁凝固成冰,染料仍留在溶液中,使溶液的颜色越来越深,即浓度越来越高,凝固点随之越来越低.
在一定压力下,纯液体有恒定的凝固温度;而溶液由于在凝固过程中不断发生组成变化,其凝固温度就不断降低(直到另一组分也从溶液中饱和析出).Kf
为凝固点下降系数.定性解释定量推导76pA液态纯溶剂溶液中溶剂稀溶液的沸点上升pamb纯溶剂的饱和蒸气压曲线遵守克-克方程沸点:液体饱和蒸气压等于外压时的温度;在外压为101.325kPa下的沸点称为正常沸点,简称沸点.
溶质不挥发的稀溶液的沸点上升,定性解释见右图.沸点上升公式沸点上升(溶质不挥发)77渗透压:渗透平衡时,溶剂液面和同一水平的溶液截面上所受的压力之差,用
表示.渗透平衡时,溶液一方压力的变化对溶剂化学势的影响抵消了组成的影响,从而有渗透发生的原因:渗透压范特霍夫渗透压公式78纯水向红萝卜内渗透渗透原理被用来处理尿毒症.在人工肾里,病人的血液在玻璃软管(用作半透膜)循环,血液里的小分子废物向管外渗透,从而使血液得到净化.例18渗析实验渗透压79凝固点下降的定性解释pApamb
一定oa液态纯溶剂溶液中溶剂固态纯溶剂稀溶液的凝固点降低A(g)A*(s)A(l)可见在液固平衡温度下,挥发性组分在液态和固态时的蒸气压相等.由此可定性解释凝固点下降的原因(见图).80凝固点下降公式的推导81凝固点下降公式的推导822NO2(g,红棕色)=N2O4(g,无色)
在冰水中混合气体颜色变淡83用热力学原理,研究化学反应体系的平衡规律,解决反应的方向和限度问题,找出平衡组成与温度、压力之间的关系.化学平衡的热力学原理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 永乐电器对赌协议书引言
- 房屋搬迁施工协议书
- 物品运送服务协议书合同
- 2025年家用雾化器返修服务合同协议
- 体育相关知识
- NCCN临床实践指南:止吐(2025.v1)解读课件
- 设计制作小赛车教案
- 九年级化学上册第七单元燃烧及其利用课题使用燃料对环境的影响考点复习教案新人教版
- 声音的高低刘教案
- 一年级数学上册以内的减法连减教学冀教版教案
- 小小养殖员课件
- 公司员工意识培训课件
- 仓库统计员的工作总结
- 小流浪猫知识题库及答案
- 2025年大学《科学社会主义-中国特色社会主义理论体系》考试备考题库及答案解析
- Unit 6 Find your way 第1课时 Get ready Start up 课件 2025-2026学年外研版(三起)英语四年级上册
- 2025秋期版国开河南电大本科《法律社会学》一平台我要考试无纸化考试试题及答案
- 义务教育英语教学大纲及实施方案2024版
- 猪场产房技术员工作总结
- 宁德时代shl测试题库以及答案解析
- 公众号解封申请书
评论
0/150
提交评论