版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市市清河中学高二数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在中,则(
)A、
B.
C.
D.参考答案:A试题分析:,选A.考点:余弦定理【名师点睛】1.选用正弦定理或余弦定理的原则在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.2.(1)运用余弦定理时,要注意整体思想的运用.(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.2.某公司有员工150人,其中50岁以上的有15人,35---49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为
(
)、3、9、18
、5、9、16
、3、10、17
、5、10、15
参考答案:A3.设抛物线的焦点为F,点P在抛物线上,则“”是“点P到x轴的距离为2”的(
)A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:C【分析】根据抛物线的定义和标准方程,即可判定充分性和必要性都成立,即可得到答案.【详解】由题意,抛物线可化为,则,即,设点的坐标为,因为,根据抛物线的定义可得,点到其准线的距离为,解得,即点到轴的距离为2,所以充分性是成立的;又由若点到轴的距离为2,即,则点到其准线的距离为,根据抛物线的定义,可得点到抛物线的焦点的距离为3,即,所以必要性是成立的,即“”是“点到轴的距离为2”的充要条件,故选C.【点睛】本题主要考查了抛物线的定义与标准方程的应用,以及充要条件的判定,其中解答中熟记抛物线的定义和标准方程是解答的关键,着重考查了推理与运算能力,属于基础题.4.一个单位有职工200人,其中有业务员120人,管理人员50人,后勤服务人员30人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为(
)A.3
B.4
C.5
D.6参考答案:C在20人的样本中应抽取管理人员人数为,选C.
5.从集合中随机取出一个数,设事件为“取出的数为偶数”,事件为“取出的数为奇数”,则事件与(
)A.是互斥且对立事件
B.是互斥且不对立事件C.不是互斥事件
D.不是对立事件
参考答案:A6.下列叙述中,正确的个数是()①命题p:“”的否定形式为:“”;②O是△ABC所在平面上一点,若,则O是△ABC的垂心;③“M>N”是“>”的充分不必要条件;④命题“若,则”的逆否命题为“若,则”;⑤已知。(A)1
(B)2
(C)3
(D)4参考答案:C7.已知双曲线C:的焦点为F1,F2,且C上的点P满足=0,|PF1|=3,|PF2|=4,则双曲线C的离心率为()A. B. C. D.5参考答案:D【考点】双曲线的简单性质.【分析】根据双曲线的定义可知|PF2|﹣|PF1|=2a=1,根据勾股定理求得4c2=25,则离心率可得.【解答】解:∵C上一点P满足PF1⊥PF2,|PF1|=3,|PF2|=4,∴|PF2|﹣|PF1|=2a=1,|PF2|2+|PF1|2=4c2=25,∴e==5,故选:D.【点评】本题主要考查了双曲线的应用.考查了学生对双曲线定义和基本知识的掌握.8.命题“任意的x∈R,都有x2≥0成立”的否定是()A.任意的x∈R,都有x2≤0成立B.任意的x∈R,都有x2<0成立C.存在x0∈R,使得x≤0成立D.存在x0∈R,使得x<0成立参考答案:D【考点】2J:命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“任意的x∈R,都有x2≥0成立”的否定是:存在x0∈R,使得x<0成立.故选:D.9.点A在z轴上,它到(3,2,1)的距离是,则点A的坐标是()A.(0,0,-1)
B.(0,1,1)
C.(0,0,1)
D.(0,0,13)参考答案:C10.和两条异面直线都垂直的直线().A.有无数条
B.有两条
C.只有一条
D.不存在参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域是
.参考答案:略12.已知数列的通项公式是=n2-10n+3,则数列的最小项是第
项.参考答案:五13.已知抛物线的焦点坐标是(0,﹣3),则抛物线的标准方程是
.参考答案:x2=﹣12y【考点】抛物线的标准方程.【专题】计算题;定义法;圆锥曲线的定义、性质与方程.【分析】由题意和抛物线的性质判断出抛物线的开口方向,并求出p的值,即可写出抛物线的标准方程.【解答】解:因为抛物线的焦点坐标是(0,﹣3),所以抛物线开口向下,且p=6,则抛物线的标准方程x2=﹣12y,故答案为:x2=﹣12y.【点评】本题考查抛物线的标准方程以及性质,属于基础题.14.已知命题p:(a+1)(a﹣2)≥0,命题q:1<a<3,若q为真命题,“p∧q”为假命题,则实数a的取值范围为.参考答案:1<a<2【考点】命题的真假判断与应用.【分析】若q为真命题,“p∧q”为假命题,则命题p为假命题,进而可得实数a的取值范围.【解答】解:若q为真命题,“p∧q”为假命题,则命题p为假命题,即(a+1)(a﹣2)<0,解得:﹣1<a<2,又∵1<a<3,∴1<a<2,故答案为:1<a<2.15.直线和将单位圆分成长度相等的四段弧,则________.参考答案:16.复数=__________。参考答案:略17.已知顶点在原点,焦点在x轴上的抛物线直线y=2x+1截得的弦长为,求抛物线的方程
.参考答案:
y2=﹣4x,或y2=12x【考点】抛物线的简单性质.【分析】设出抛物线的方程,直线与抛物线方程联立消去y,进而根据韦达定理求得x1+x2,x1?x2的值,利用弦长公式求得|AB|,由AB=可求p,则抛物线方程可得.【解答】解:设直线与抛物线交于A(x1,y1),B(x2,y2)设抛物线的方程为y2=2px,与直线y=2x+1联立,消去y得4x2﹣(2p﹣4)x+1=0,则x1+x2=,x1?x2=.|AB|=|x1﹣x2|=?=,化简可得p2﹣4p﹣12=0,∴p=﹣2,或6∴抛物线方程为y2=﹣4x,或y2=12x.故答案为:y2=﹣4x,或y2=12x.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.(1)求证:平面PAC⊥平面PBC;(6分)(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.(6分)参考答案:(1)证明由AB是圆的直径,得AC⊥BC,由PA⊥平面ABC,BC?平面ABC,得PA⊥BC.又PA∩AC=A,PA?平面PAC,AC?平面PAC,所以BC⊥平面PAC.因为BC?平面PBC,所以平面PBC⊥平面PAC.(5分)(2)解方法一过C作CM∥AP,则CM⊥平面ABC.如图,以点C为坐标原点,分别以直线CB、CA、CM为x轴,y轴,z轴建立空间直角坐标系.因为AB=2,AC=1,所以BC=.因为PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).故C=(,0,0),C=(0,1,1).设平面BCP的法向量为n1=(x,y,z),高考资源网则,所以不妨令y=1,则n1=(0,1,-1).因为A=(0,0,1),A=(,-1,0),设平面ABP的法向量为n2=(x,y,z),则所以不妨令x=1,则于是所以由题意可知二面角C-PB-A的余弦值为.(10分)方法二过C作CM⊥AB于M,因为PA⊥平面ABC,CM?平面ABC,所以PA⊥CM,又PA∩AB=A,故CM⊥平面PAB.过M作MN⊥PB于N,连接NC,由三垂线定理得CN⊥PB,所以∠CNM为二面角C-PB-A的平面角.在Rt△ABC中,由AB=2,AC=1,得BC=,CM=,BM=,在R t△PAB中,由AB=2,PA=1,得PB=.因为Rt△BNM∽Rt△BAP,所以=,故MN=.又在Rt△CNM中,CN=,故cos∠CNM=.所以二面角C-PB-A的余弦值为.
19.已知椭圆+=1(a>b>0)经过点(0,1),离心率为,点O为坐标原点.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设不与坐标轴平行的直线l1:y=kx+m与椭圆交于A,B两点,与x轴交于点P,设线段AB中点为M.
(i)证明:直线OM的斜率与直线l1的斜率之积为定值;
(ii)如图,当m=﹣k时,过点M作垂直于l1的直线l2,交x轴于点Q,求的取值范围.参考答案:【考点】椭圆的简单性质.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由已知得b=1,e=,由此能求出椭圆E的标准方程.(Ⅱ)(i)将直线y=kx+m代入,得(1+4k2)x2+8kmx+4m2﹣4=0,由此利用韦达定理、斜率公式能证明直线OM的斜率与直线l1的斜率之积为定值.(ii)当m=﹣k时,直线l1:y=k(x﹣1),P(1,0),从而M(,),直线l2方程为y﹣=﹣,从而|PQ|=,由此利用弦长公式能求出的取值范围.【解答】解:(Ⅰ)∵椭圆+=1(a>b>0)经过点(0,1),离心率为,点O为坐标原点,∴b=1,e=,∴,解得a2=4,∴椭圆E的标准方程为+y2=1.证明:(Ⅱ)(i)将直线y=kx+m代入,整理,得(1+4k2)x2+8kmx+4m2﹣4=0,设A(x1,y1),B(x2,y2),则,,∴,,∴M(﹣,),∴=?k=﹣.解:(ii)当m=﹣k时,由(i)知直线l1:y=k(x﹣1),∴P(1,0),∴,,∴M(,),∴直线l2方程为y﹣=﹣,令y=0,得x=,∴Q(,0),∴|PQ|=|1﹣|=,又|AB|=|x2﹣x1|==,∴==4=4,∵k≠0,∴1<3﹣<3,∴的取值范围是(4,4).【点评】本题考查椭圆方程的求法,考查两直线的斜率之积为定值的证明,考查两线段比值的取值范围的求法,是中档题,解题时要认真审题,注意弦长公式的合理运用.20.(本小题满分12分)已知椭圆及点B(0,-2),过左焦点F1与B的直线交椭圆于C、D两点,F2为其右焦点,求△CDF2的面积.参考答案:21.一口袋中有10个大小相同的球,4个红球,3个绿球,3个黄球,求从口袋中任取2个球,取出2个同色球的概率。参考答案:略22.(本小题满分12分)已知函数,曲线在点处的切线方程为.(1)求函数的解析式;(2)过点能作几条直线与曲线相切?说明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省聊城市东昌教育集团2025-2026学年上学期九年级期末数学模拟检测试题(含答案)
- 安徽省蚌埠市部分学校2026届九年级上学期期末考试英语试卷(含答案、无听力原文及音频)
- 飞行区技术标准培训课件
- 钢结构连接设计技术要领
- 飞机简单介绍
- 飞机知识科普儿童
- 飞机的基础知识课件
- 2026山东事业单位统考省煤田地质局第五勘探队招聘初级综合类岗位3人考试参考试题及答案解析
- 2026年唐山市丰南区新合供销合作社管理有限公司招聘审计人员1名备考考试试题及答案解析
- 工业厂房水电维修管理制度(3篇)
- ICU护士长2025年度述职报告
- 2026云南保山电力股份有限公司校园招聘50人笔试参考题库及答案解析
- 引水压力钢管制造及安装工程监理实施细则
- 钢结构除锈后油漆施工方案
- 骨科患者围手术期静脉血栓栓塞症预防指南(2025年)
- 辅助生殖项目五年发展计划
- 仓库安全消防管理制度
- 2025年信息化运行维护工作年度总结报告
- 肠梗阻的课件
- 广西对口升专职业技能测试答案
- 股东名册(范本)
评论
0/150
提交评论