综合解析-人教版数学八年级上册期中综合复习试题(详解版)_第1页
综合解析-人教版数学八年级上册期中综合复习试题(详解版)_第2页
综合解析-人教版数学八年级上册期中综合复习试题(详解版)_第3页
综合解析-人教版数学八年级上册期中综合复习试题(详解版)_第4页
综合解析-人教版数学八年级上册期中综合复习试题(详解版)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、如图,,则A.45° B.55° C.35° D.65°2、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是(

)A.1 B.2 C.4 D.83、下列长度的3根小木棒不能搭成三角形的是(

)A.2cm,3cm,4cm B.1cm,2cm,3cm C.3cm,4cm,5cm D.4cm,5cm,6cm4、如图,若,则下列结论中不一定成立的是(

)A. B. C. D.5、工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在的两边、上分别在取,移动角尺,使角尺两边相同的刻度分别与点、重合,这时过角尺顶点的射线就是的平分线.这里构造全等三角形的依据是(

)A. B. C. D.二、多选题(5小题,每小题4分,共计20分)1、如图,BE=CF,AB=DE,添加下列哪些条件不能推证△ABC≌△DEF(

A.BC=EF B.∠C=∠F C.AB∥DE D.∠A=∠D2、如图,在中,,,点E在的延长线上,的角平分线与的角平分线相交于点D,连接,下列结论中正确的是(

)······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······A. B. C. D.3、关于多边形,下列说法中正确的是(

)A.过七边形一个顶点可以作4条对角线 B.边数越多,多边形的外角和越大C.六边形的内角和等于720° D.多边形的内角中最多有3个锐角4、如图,为了估计池塘两岸,间的距离,在池塘的一侧选取点,测得米,米,那么,间的距离可能是(

)A.5米 B.8.7米 C.27米 D.18米5、如图,下列结论正确的是(

)A. B.C. D.第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如图,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BC,若S△ABC=6,则图中阴影部分的面积是___.2、如图,在△ABC中,AD⊥BC于点D,过A作AEBC,且AE=AB,AB上有一点F,连接EF.若EF=AC,CD=4BD,则=_____.3、我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比Ω”(),那么三边长分别为7,24,25的三角形的最小角割比Ω是______.4、如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=______.5、(1)如图1所示,_________;(2)如果把图1称为二环三角形,它的内角和为;图2称为二环四边······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······四、解答题(5小题,每小题8分,共计40分)1、如图,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大小;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.2、已知://.求证://.3、如图,点C、F在线段BE上,∠ABC=∠DEF=90°,BC=EF,请只添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明.4、在中,,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.(1)如图1,当时,则_______°;(2)当时,①如图2,连接AD,判断的形状,并证明;②如图3,直线CF与ED交于点F,满足.P为直线CF上一动点.当的值最大时,用等式表示PE,PD与AB之间的数量关系为_______,并证明.······线······○······封······○······密······○······内······○······号学 级年 名姓·······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······-参考答案-一、单选题1、B【解析】【分析】求出BE=CF,根据SSS证出△AEB≌△DFC,推出∠C=∠B,根据全等三角形的判定推出即可.【详解】解答:证明:∵,∴,∴BE=CF,在△AEB和△DFC中,,∴△AEB≌△DFC(SSS),∴∠C=∠B=55°.【考点】本题考查了全等三角形的性质和判定,解此题的关键是推出△AEB≌△DFC,注意:全等三角形的对应边相等,对应角相等.2、C【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解.【详解】根据三角形的三边关系得,即,则选项中4符合题意,故选:C.【考点】本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键.3、B【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】A.,能构成三角形,不合题意;B.,不能构成三角形,符合题意;C.,能构成三角形,不合题意;D.,能构成三角形,不合题意.故选B.【考点】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······4、A【解析】【分析】根据翻三角形全等的性质一一判断即可.【详解】解:∵△ABC≌△ADE,∴AD=AB,AE=AC,BC=DE,∠ABC=∠ADE,∴∠BAD=∠CAE,∵AD=AB,∴∠ABD=∠ADB,∴∠BAD=180°-∠ABD-∠ADB,∴∠CDE=180°-∠ADB-ADE,∵∠ABD=∠ADE,∴∠BAD=∠CDE故B、C、D选项不符合题意,故选:A.【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质.5、D【解析】【分析】根据全等三角形的判定条件判断即可.【详解】解:由题意可知在中∴(SSS)∴∴就是的平分线故选:D【考点】本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.二、多选题1、ABD【解析】【分析】根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得△ABC≌△DEF,从而可以解答本题.【详解】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴添加条件BC=EF,根据SS不能判断△ABC≌△DEF,故选项A符合题意;添加条件∠C=∠F,根据SSA不能判断△ABC≌△DEF,故选项B符合题意;添加条件AB∥DE,可以得到∠B=∠DEF,根据(SAS)可判断△ABC≌△DEF,故选项C不符合题意;添加条件∠A=∠D,根据SSA不能判断△ABC≌△DEF,故选项D符合题意;故选:ABD.【考点】本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.2、ACD【解析】【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠DBC,然后利用三角形的外角性质求出∠DOC,再根据邻补角可得∠ACE=120°,由角平分线的定义求出∠ACD=60°,再利用三角形的内角和定理列式计算即可∠BDC,根据BD平分∠ABC和CD平分∠ACE,可得AD平分∠BAC的邻补角,由邻补角和角平分线的定义可得∠DAC.【详解】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠DBC=∠ABC=×50°=25°,∵∠DOC是△OBC的外角,∴∠DOC=∠OBC+∠ACB=25°+60°=85°,故B选项不正确;∵∠ACB=60°,∴∠ACE=180°-60°=120°,∵CD平分∠ACE,∴∠ACD=∠ACE=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD平分∠ABC,∴点D到直线BA和BC的距离相等,∵CD平分∠ACE∴点D到直线BC和AC的距离相等,∴点D到直线BA和AC的距离相等,∴AD平分∠BAC的邻补角,∴∠DAC=(180°-70°)=55°,故D选项正确.故选ACD.【考点】本题主要考查了角平分线的定义,性质和判定,三角形的内角和定理和三角形的外角性质,解决本题的关键是要熟练掌握角平分线的定义,性质和判定.3、ACD【解析】【分析】根据多边形的内角和、外角和,多边形的内角线,即可解答.【详解】解:A、过七边形一个顶点可以作4条对角线,选项正确,符合题意;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······C、六边形的内角和等于720°,选项正确,符合题意;D、多边形的内角中最多有3个锐角,选项正确,符合题意;故选:ACD【考点】本题考查了多边形,解决本题的关键是熟记多边形的有关性质.4、ABD【解析】【分析】连接AB,根据三角形的三边关系定理得出不等式,即可得出选项.【详解】解:连接AB,∵PA=15米,PB=11米,∴由三角形三边关系定理得:1511<AB<15+11,4<AB<26,∴那么,间的距离可能是5米、8.7米、18米;故选:ABD.【考点】本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式是解此题的关键.5、AD【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答.【详解】A、∵∠1是△ABC的一个外角,∴∠1=∠2+∠3,正确,符合题意;B、∵∠1是△ABC的一个外角,∴∠1=∠2+∠3,选项错误,不符合题意;C、∵∠1是△ABC的一个外角,∴∠1=∠2+∠3,又∵∠2是△CDE的一个外角,∴∠2=∠4+∠5,∴,选项错误,不符合题意;D、∵∠2是△CDE的一个外角,∴∠2=∠4+∠5,正确,符合题意.故选:AD.【考点】本题主要考查了三角形的外角性质,解题关键是掌握一个外角等于和它不相邻的两个内角的和.三、填空题1、2【解析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······根据三角形的中线的性质进行解答即可.【详解】解:∵S△ABC=6,∴S△ABD=3,∵AG=2GD,∴S△ABG=2,故答案为:2【考点】本题考查三角形的面积问题.其中根据三角形的中线的性质进行解答是解决本题的关键.2、故答案为:【考点】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.6.【解析】【分析】在CD上取一点G,使GD=BD,连接AG,作EH⊥AB交BA的延长线于点H,先证明△AEH≌△GAD,得EH=AD,AH=GD,再证明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,则,得S△AEF=S△GAC,设GD=BD=m,则CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,则,,得,于是得到问题的答案.【详解】解:如图,在CD上取一点G,使GD=BD,连接AG,作EH⊥AB交BA的延长线于点H,∵AD⊥BC于点D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,设GD=BD=m,则CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案为:.【考点】此题考查平行线的性质、全等三角形的判定与性质、有关面积比问题的求解等知识与方法,正确地作出所需要的辅助线是解题的关键.3、.【解析】【分析】根据题意作出图形,然后根据角平分线的性质得到,再根据三角形的面积和最小角割比Ω的定义计算即可.【详解】解:如图示,,,,则,根据题意,作的角平分线交于点,过点,作交于点,过点,作交于点,则∵,,则()故答案是:.【考点】本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键.4、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【考点】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.5、

360°

720°

1080°

【解析】【分析】(1)结合题意,根据对顶角和三角形内角和的知识,得,再根据四边形内角和的性质计算,即可得到答案;(2)连接,交于点M,根据三角形内角和和对顶角的知识,得;结合五边形内角和性质,得;结合(1)的结论,根据数字规律的性质分析,即可得到答案.【详解】(1)如图所示,连接AD,交于点M∵,,∴;故答案为:360°(2)如图,连接,交于点M∴,∵∴∴∵∴∴∴二环四边形的内角和为:∵二环三角形的内角和为:······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴二环五边形的内角和为:∴二环n边形的内角和为:故答案为:,,.【考点】本题考查了多边形内角和、对顶角、数字规律的知识;解题的关键是熟练掌握三角形内角和、多边形内角和、数字规律的性质,从而完成求解.四、解答题1、(1)17.5°;(2)证明过程见解析【解析】【分析】(1)首先计算出∠B,∠BAC的度数,根据AE是∠BAC的角平分线可得∠EAC=37.5°,再根据Rt△ADC中直角三角形两锐角互余可得∠DAC的度数,进而可得答案;(2)过A作AD⊥BC于D,证明∠DAE=∠FEC,由三角形内角和定理得到∠EAC=90°-∠C,进而可得∠DAE=∠DAC-∠EAC,利用等量代换可得∠DAE=∠C即可求解.【详解】解:(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴在△ABC中,由内角和定理可知:∠BAC=180°-∠B-∠C=180°-70°-35°=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,两锐角互余,∴∠DAC=90°-35°=55°,∴∠DAE=55°-37.5°=17.5°,故答案为:17.5°;(2)过A点作AD⊥BC于D点,如下图所示:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°-∠B-∠C)=(180°-3∠C)=90°-∠C,∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-∠C)=(90°-∠C)-(90°-∠C)=∠C,∴∠FEC=∠C,∴∠C=2∠FEC.【考点】此题主要考查了三角形内角和定理,角平分线的定义,直角三角形中两锐角互余等知识点,熟练掌握各图形的性质是解决本题的关键.2、见解析【解析】【分析】······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······根据,得到∠A=∠C,然后推出AF······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】解:∵,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴.【考点】本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.3、(1)∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE,证明见解析.【解析】【分析】(1)根据题意添加条件即可;(2)选择添加条件AC=DE,根据“HL”证明即可.【详解】(1)根据“ASA”,需添加的条件是∠ACB=∠DFE,根据“HL”,需添加的条件是AC=DF,故答案为:∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE证明,证明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【考点】本题考查了全等三角形的判定,熟知全等三角形的判定定理是解题关键,证明三角形全等时注意条件的对应.4、(1)80;(2)是等边三角形;(3).【解析】【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30°直角三角形性质可知即可得出结论.【详解】解:(1)∵点E为线段AC,CD的垂直平分线的交点,∴,∴,,∴,····

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论