2023-2024学年河南省南召县联考中考数学考试模拟冲刺卷含解析_第1页
2023-2024学年河南省南召县联考中考数学考试模拟冲刺卷含解析_第2页
2023-2024学年河南省南召县联考中考数学考试模拟冲刺卷含解析_第3页
2023-2024学年河南省南召县联考中考数学考试模拟冲刺卷含解析_第4页
2023-2024学年河南省南召县联考中考数学考试模拟冲刺卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省南召县联考中考数学考试模拟冲刺卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1062.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2 B.3 C.4 D.53.如图所示的几何体,它的左视图是()A. B. C. D.4.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A. B. C. D.5.估计﹣1的值为()A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间6.如图,已知垂直于的平分线于点,交于点,,若的面积为1,则的面积是()A. B. C. D.7.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,,,,则等于A. B. C. D.8.若a与5互为倒数,则a=()A. B.5 C.-5 D.9.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.10.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是抛物线上的两点,则y1<y2.其中说法正确的有()A.②③④ B.①②③ C.①④ D.①②④二、填空题(共7小题,每小题3分,满分21分)11.若式子有意义,则实数x的取值范围是_______.12.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.13.计算(﹣3)+(﹣9)的结果为______.14.不等式组x-2>0①2x-6>2②15.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).16.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.17.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=.三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.19.(5分)如图,AB是半径为2的⊙O的直径,直线l与AB所在直线垂直,垂足为C,OC=3,P是圆上异于A、B的动点,直线AP、BP分别交l于M、N两点.(1)当∠A=30°时,MN的长是;(2)求证:MC•CN是定值;(3)MN是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.20.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接DC,若BC=4,求弧DC与弦DC所围成的图形的面积.21.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB边的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠F=30°,BF=3,求弧AD的长.22.(10分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?23.(12分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).(1)求抛物y=x2+bx+c线的解析式.(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).24.(14分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:,故选C.2、D【解析】

①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.3、A【解析】

从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,

故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.4、B【解析】

根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.5、C【解析】分析:根据被开方数越大算术平方根越大,可得答案.详解:∵<<,∴1<<5,∴3<﹣1<1.故选C.点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出1<<5是解题的关键,又利用了不等式的性质.6、B【解析】

先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面积为1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.7、C【解析】

根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:,,,,∴==,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.8、A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=,故选A.点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.9、D【解析】

根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.10、D【解析】

根据图象得出a<0,a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y1),(,y2)到对称轴的距离即可判断④.【详解】∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y轴的交点在y轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=,∴a=-b,∴b>0,∴abc<0,故①正确;∵a=-b,∴a+b=0,故②正确;把x=2代入抛物线的解析式得,4a+2b+c=0,故③错误;∵,故④正确;故选D..【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.二、填空题(共7小题,每小题3分,满分21分)11、x≤2且x≠1【解析】

根据被开方数大于等于1,分母不等于1列式计算即可得解.【详解】解:由题意得,且x≠1,解得且x≠1.故答案为且x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.12、k≥﹣1【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+1x-k=0有实数根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案为k≥-1.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13、-1【解析】试题分析:利用同号两数相加的法则计算即可得原式=﹣(3+9)=﹣1,故答案为﹣1.14、x>4【解析】

分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15、A【解析】试题分析:由题意得:SA>SB>SC,故落在A区域的可能性大考点:几何概率16、1【解析】

∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.17、31°.【解析】试题分析:由AB∥CD,根据平行线的性质得∠1=∠EFD=62°,然后根据角平分线的定义即可得到∠2的度数.∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=12∠EFD=1故答案是31°.考点:平行线的性质.三、解答题(共7小题,满分69分)18、(1)见解析(2)【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.19、(1);(2)MC•NC=5;(3)a+b的最小值为2;(4)以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为.【解析】

(1)由题意得AO=OB=2、OC=3、AC=5、BC=1,根据MC=ACtan∠A=、CN=可得答案;(2)证△ACM∽△NCB得,由此即可求得答案;(3)设MC=a、NC=b,由(2)知ab=5,由P是圆上异于A、B的动点知a>0,可得b=(a>0),根据反比例函数的性质得a+b不存在最大值,当a=b时,a+b最小,据此求解可得;(4)设该圆与AC的交点为D,连接DM、DN,证△MDC∽△DNC得,即MC•NC=DC2=5,即DC=,据此知以MN为直径的一系列圆经过定点D,此顶点D在直线AB上且CD的长为.【详解】(1)如图所示,根据题意知,AO=OB=2、OC=3,则AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直线l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,则MN=MC+CN=+=,故答案为:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC•NC=AC•BC=5×1=5;(3)设MC=a、NC=b,由(2)知ab=5,∵P是圆上异于A、B的动点,∴a>0,∴b=(a>0),根据反比例函数的性质知,a+b不存在最大值,当a=b时,a+b最小,由a=b得a=,解之得a=(负值舍去),此时b=,此时a+b的最小值为2;(4)如图,设该圆与AC的交点为D,连接DM、DN,∵MN为直径,∴∠MDN=90°,则∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,则△MDC∽△DNC,∴,即MC•NC=DC2,由(2)知MC•NC=5,∴DC2=5,∴DC=,∴以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为.【点睛】本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点.20、(1)详见解析;(2).【解析】

(1)连接OD,由平行线的判定定理可得OD∥AC,利用平行线的性质得∠ODE=∠DEA=90°,可得DE为⊙O的切线;

(2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可.【详解】解:(1)证明:连接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)连接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC为直径,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等边三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC与弦DC所围成的图形的面积=﹣=﹣.【点睛】本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.21、(1)见解析;(2)2π.【解析】

证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的长度=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.22、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】

(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.【详解】解:(1)本次调查共抽取的学生有(名)选择“友善”的人数有(名)∴条形统计图如图所示:(2)∵选择“爱国”主题所对应的百分比为,∴选择“爱国”主题所对应的圆心角是;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.【解析】

(1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式(2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.(3)由题得出tanBAO=,分情况讨论求得F,H坐标.【详解】(1)把点、代入得,解得,,∴抛物线的解析式为.(2)由得,∴顶点的坐标为,把代入得解得,∴直线解析式为,设点,代入得,∴得,设点,代入得,∴得,由于直线与轴、轴分别交于点、∴易得、,∴,∴,∵点在直线上,∴,∴,即,∵,∴以点为圆心,半径长为4的圆与直线相离.(3)点、的坐标分别为、或、或、.C(-1,-1),A(0,6),B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论