福建省莆田市仙游县第六片区2023-2024学年中考联考数学试卷含解析_第1页
福建省莆田市仙游县第六片区2023-2024学年中考联考数学试卷含解析_第2页
福建省莆田市仙游县第六片区2023-2024学年中考联考数学试卷含解析_第3页
福建省莆田市仙游县第六片区2023-2024学年中考联考数学试卷含解析_第4页
福建省莆田市仙游县第六片区2023-2024学年中考联考数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省莆田市仙游县第六片区2023-2024学年中考联考数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是()A. B.C. D.2.tan30°的值为()A.12 B.32 C.33.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是()A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<04.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)5.若|a|=﹣a,则a为()A.a是负数 B.a是正数 C.a=0 D.负数或零6.若a与5互为倒数,则a=()A. B.5 C.-5 D.7.函数y=中,x的取值范围是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣28.不等式2x﹣1<1的解集在数轴上表示正确的是()A. B.C. D.9.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×10510.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF二、填空题(共7小题,每小题3分,满分21分)11.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为______.12.函数y=113.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.14.不等式组的解集为____.15.如图,扇形OAB的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到O′A′B′的位置时,则点O到点O′所经过的路径长为_____.16.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,则AE=_______.17.不等式的解集是________________三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:1.求的值.19.(5分)如图,已知:AD和BC相交于点O,∠A=∠C,AO=2,BO=4,OC=3,求OD的长.20.(8分)如图,一次函数y=ax+b的图象与反比例函数y=kx的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=12,OB=4,OE=2(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.21.(10分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“关联点”有_____;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.22.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.23.(12分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.24.(14分)在平面直角坐标系中,点,,将直线平移与双曲线在第一象限的图象交于、两点.(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;(2)若,①如图2,当时,求的值;②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】

将,代入,得,,然后分析与的正负,即可得到的大致图象.【详解】将,代入,得,,即,.∴.∵,∴,∴.即与异号.∴.又∵,故选D.【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.2、D【解析】

直接利用特殊角的三角函数值求解即可.【详解】tan30°=33,故选:D【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.3、B【解析】由已知抛物线求出对称轴,解:抛物线:,对称轴,由判别式得出a的取值范围.,,∴,①,.②由①②得.故选B.4、A【解析】

首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.5、D【解析】

根据绝对值的性质解答.【详解】解:当a≤0时,|a|=-a,∴|a|=-a时,a为负数或零,故选D.【点睛】本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.6、A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=,故选A.点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.7、D【解析】试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.故选D.点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.8、D【解析】

先求出不等式的解集,再在数轴上表示出来即可.【详解】移项得,2x<1+1,合并同类项得,2x<2,x的系数化为1得,x<1.在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.9、B【解析】

科学计数法是a×,且,n为原数的整数位数减一.【详解】解:35578=3.5578×,故选B.【点睛】本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.10、B【解析】

根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】

根据二次函数的性质列出不等式和等式,计算即可.【详解】解:∵关于x的二次函数y=ax1+a1的最小值为4,

∴a1=4,a>0,

解得,a=1,

故答案为1.【点睛】本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.12、x>1【解析】试题分析:二次根号下的数为非负数,二次根式才有意义,故需要满足x-1≻0⇒x≻1考点:二次根式、分式有意义的条件点评:解答本题的关键是熟练掌握二次根号下的数为非负数,二次根式才有意义;分式的分母不能为0,分式才有意义.13、【解析】

根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.【详解】解:∵∠AED=∠ABD(同弧所对的圆周角相等),∴tan∠AED=tanB=.故答案为:.【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.14、x>1【解析】

分别解出两不等式的解集再求其公共解.【详解】由①得:x>1

由②得:x>∴不等式组的解集是x>1.【点睛】求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.15、【解析】

点O到点O′所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可.【详解】解:∵扇形OAB的圆心角为30°,半径为1,∴AB弧长=∴点O到点O′所经过的路径长=故答案为:【点睛】本题考查了弧长公式:.也考查了旋转的性质和圆的性质.16、5【解析】∵BD⊥AC于D,∴∠ADB=90°,∴sinA=.设BD=,则AB=AC=,在Rt△ABD中,由勾股定理可得:AD=,∴CD=AC-AD=,∵在Rt△BDC中,BD2+CD2=BC2,∴,解得(不合题意,舍去),∴AB=10,AD=8,BD=6,∵BE平分∠ABD,∴,∴AE=5.点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到△BDC中,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.17、【解析】

首先去分母进而解出不等式即可.【详解】去分母得,1-2x>15移项得,-2x>15-1合并同类项得,-2x>14系数化为1,得x<-7.故答案为x<-7.【点睛】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.三、解答题(共7小题,满分69分)18、【解析】

先根据平行线的性质证明△ADE∽△FGH,再由线段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.【详解】解:∵DE∥BC,∴∠ADE=∠B,∵FG∥AB,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG,∴△ADE∽△FGH,∴,∵DE∥BC,FG∥AB,∴DF=BG,同理:FE=HC,∵BG︰GH︰HC=2︰4︰1,∴设BG=2k,GH=4k,HC=1k,∴DF=2k,FE=1k,∴DE=5k,∴.【点睛】本题考查了平行线的性质和三角形相似的判定和相似比.19、OD=6.【解析】

(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题.【详解】在△AOB与△COD中,,∴△AOB~△COD,∴,∴,∴OD=6.【点睛】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求.20、(1)y=-12x+2,y=-6x【解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x轴于点E,tan∠ABO=OAOB=CEBE=12,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴4a+b=0b=2,解得:a=-故直线AB的解析式为y=-1∵反比例函数y=kx的图象过C,∴3=k-2,∴k(2)联立反比例函数的解析式和直线AB的解析式可得:y=-12x+2y=-6x,可得交点D的坐标为(1,﹣1),则△(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.21、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;(3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;【详解】(1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD的“关联点”为P2,P3;(2)作正方形ABCD的内切圆和外接圆,∴OF=1,,.∵E是正方形ABCD的“关联点”,∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),∵点E在直线上,∴点E在线段FG上.分别作FF’⊥x轴,GG’⊥x轴,∵OF=1,,∴,.∴.根据对称性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵线段MN上的每一个点都是正方形ABCD的“关联点”,①MN与小⊙Q相切于点F,如图3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如图4中,∵,,∴.∴.综上:.【点睛】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.22、(1)证明见解析(2)3【解析】试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.试题解析:(1)∵四边形ABCD是平行四边形,∴DC∥AB,即DF∥EB.又∵DF=BE,∴四边形DEBF是平行四边形.∵DE⊥AB,∴∠EDB=90°.∴四边形DEBF是矩形.(2)∵四边形DEBF是矩形,∴DE=BF=4,BD=DF.∵DE⊥AB,∴AD===1.∵DC∥AB,∴∠DFA=∠FAB.∵AF平分∠DAB,∴∠DAF=∠FAB.∴∠DAF=∠DFA.∴DF=AD=1.∴BE=1.∴AB=AE+BE=3+1=2.∴S□ABCD=AB·BF=2×4=3.23、(1)2;(2)x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论