广西自然科学基金资助项目_第1页
广西自然科学基金资助项目_第2页
广西自然科学基金资助项目_第3页
广西自然科学基金资助项目_第4页
广西自然科学基金资助项目_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ApplicationofTheFundamentalHomomorphismTheoremofGroupLIQian-qianLIUZhi-gangYANGLi-ying(DepartmentofMathematicsandComputerScience,GuangxiTeachersEducationUniversity,NanningGuangxi530001,P.R.China)Abstract:Thefundamentalhomomorphismtheoremisveryimportantconsequenceingrouptheory,byusingitwecanresolvemanyproblems.InthispaperweresearchesmainlyaboutthefundamentalhomomorphismtheoremappliedtodirectproductsofgroupsandgroupofinnerautomorphismsofagroupG.Keyword:TheFundamentalHomomorphismTheorem;DirectProducts;InnerAutomorphismsMR()SubjectClassification:16WChineseLibraryClassification:O153.3Documentcode:AIntherealmofabstractalgebra,groupisoneofthebasicandimportantconcept,haveextensiveapplicationinthemathitselfandmanysideofmodernsciencetechnique.ForexampleTheoriesphysics,Quantummechanics,Quantumchemistry,Crystallographyapplicationareclearcertifications.Sothat,afterwestudyabstractalgebracourse,godeepintoagroundoftheoriesofresearchtohavethenecessityverymuchmore.Inthecontentsofgroup,thefundamentalhomomorphismtheoremisveryimportanttheorem,wecanuseitprovemanyproblemsaboutgrouptheory,inthispapertoproveseveralconclusionsasfollowwiththefundamentalhomomorphismtheorem:Thesecontentsareallstandardifwenottothespecialprovisionandexplained.Definition1.Letbeasubgroupofagroupwithsymbol≤,wesayisthenormalsubgroupofifoneofthefollowingconditionshold.Tosimplifymatters,wewrite.(1)forany;(2)wheneverany;(3)foreveryandany.Definition2.Thekernelofagrouphomomorphismfromtoagroupwithidentityistheset.Thekernelofisdenotedby.Definition3.Letbeacollectionofgroups.Theexternaldirectproductof,广西自然科学基金(0447038)资助项目writtenas,isthesetofallm-tuplesforwhichtheitscomponentisanelementof,andtheoperationiscomponentwise.Insymbols=,whereisdefinedtobeNoticethatitiseasilytoverifythattheexternaldirectproductofgroupsisitselfagroup.[4]Definition4.Letbeagroupandbeasubgroupof.Forany,thesetiscalledtheleftcosetofincontaining.AnalogouslyiscalledtherightcosetofHincontaining.Lemma1.[1](Thefundamentalhomomorphismtheorem)Letbeagrouphomomorphismfromto.Thenthe=isthenormalsubgroupof,and.Tosimplifymatters,wecallthetheoremastheFHT.Lemma2.[2]Letbeagrouphomomorphismfromto.Thenwehavethefollowingproperties:(1)Ifisasubgroupof,thenisasubgroupof;(2)Ifisanormalin,thenisanormalin;(3)Ifisasubgroupof,thenisasubgroupof;(4)Ifisanormalsubgroupof,thenisanormalsubgroupofLemma3.[3]Letbeahomomorphismfromagrouptoagroup,and,.Then.Lemma4.[4]LetHbeasubgroupofGandletbelongtoG,then:(1)ifandonlyif;(2)ifandonlyif.Byusingtheabovelemmaswecanobtainthefollowingmainlyresults.Theorem1.LetGandHbetwogroups.SupposeJGandKH,thenand.Proof.Firstwewillprove.Foranyandevery.Wehave:.Sinceand,wecanget,i.e..Thus.WemakeuseoftheFHTtoprovethatisisomorphicto.Thereforewemustlookforagrouphomomorphismfromontoanddeterminethekernelofit.Infactonecandefinecorrespondencedefinedby.Clearly,,theremustbetosatisfy.Thus,isonto.BecauseofJG,wehavefor,similarly,for.When,thereare.Forany,wehave====.Hence.Thereforeisgroupahomomorphismfromontoandistheidentityof.Forany,then,accordingtothepropertyofcoset,wecanget:ifandonlyifand,i.e.=.Nowletwelookatourproof:,isagrouphomomorphismfromontoandthekernelofis.AccordingtotheFHT,wecanget.Theorem2.Letisagrouphomomorphismfromonto.Ifand,thenwhere.Proof:AccordingtoLemma2.[2](2),weknow.Toestablish,wefirstlyneedtoconstructamappingandproveisagrouphomomorphismfromonto.Wegivethemappingdefinedbywhere=.For,sinceisasurjectionfromto,wemustbefoundsuchthat.Thusisonto.Forarbitrary,Thereforeisagrouphomomorphism.Wewillnowshow,infactweknowthatisidentityof,accordingtoLemma4,wecangetthatfor,then,say,sothat.Ontheotherhand,,,thatistosay,.Moreover,becauseof,therefore.Thatis.AccordingtotheFHT,wecanobtain. Theorem1andTheorem2applyExercise1andExercise2.Exercise1.isnormalsubgroupof,isanormalsubgroupof.Sothatforanyand,forafunction:wehaveisagroupisomorphism,sothatAssumeandaresetsofallthenonzerorealnumbersandpositiverealnumbersrespectively,itisreadilytoverifythattheyareindeedgroupwithordinarymultiplication.Exercise2.Letbegenerallineargroupof2×2matricesoverunderordinarymatrixmultiplication.Thenthemappingisagrouphomomorphismfromonto.Thegroupofmatriceswithdeterminant1overisanormalsubgroupof.Moreover.Definition5.Anautomorphismofgroupisjustagroupisomorphismfromtoitself.Thesetofallautomorphismsofgroupisdenotedby.Forany,iscalledaninnerautomorphismofandisthesetofallinnerautomorphismof.Theorem3:Letbeagroupandthemappingdefinedby.Then≤and.Proof.Itisclearlythat≤[5].Toshow,sufficeittoprovethatisanautomorphismofforany.1)(one-to-one)Forany,if=,thenbyusingcancellationlawofgroup.Thusisone-to-one.2)(onto)Forany,wetake,then,sothatisonto.3)(O.P.)Forany,wehave.Thereforeisisomorphismfromto.Accordingtothedefinitionofautomorphism.Weknowisanautomorphismof.Noticethatforany,wehaveand.Infactforany,itisclearly.Also,Thus.Since,say,wehaveknown.Wecanobtain,i.e..Hencetheproofof≤iscomplete.Itiseasytoseethatforevery,ifandonlyifwhereisthecenterof(shortfor).Letbethemappingdefinedby,wewillprovethatisagrouphomomorphismfromGontoI(G)andthatCisitskernel.Forevery,wecanreadilyfindthat,thatistosay,isonto.Forany,since,sothatisagrouphomomorphismfromonto.Noticethatforanyandevery,wehave,i.e.,,thatis.Weobtain,hence.Next,forany,wekno

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论