版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省孝感汉川市2024届八年级数学第二学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在□ABCD中,点E、F分别在边AB、DC上,下列条件不能使四边形EBFD是平行四边形的条件是()A.DE=BF B.AE=CF C.DE∥FB D.∠ADE=∠CBF2.某课外兴趣小组为了解所在地区老年人的健康情况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.调查了10名老年邻居的健康状况B.在医院调查了1000名老年人的健康状况C.在公园调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况3.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形4.要使式子3-x有意义,则x的取值范围是()A.x>0 B.x≥﹣3 C.x≥3 D.x≤35.使有意义的的取值范围是()A. B. C. D.6.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的角平分线AF与AB的垂直平分线DF交于点F,连接CF,BF,则∠BCF的度数为()A.30° B.40° C.50° D.45°7.某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过200元的部分可以享受打折优惠,若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过200元的部分可以享受的优惠是()A.打五折 B.打六折 C.打七折 D.打八折8.某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件 B.37件 C.38件 D.38.5件9.位参加歌唱比赛的同学的成绩各不相同,按成绩取前位进入决赛。如果小尹知道了自己的成绩后,要判断自己能否进入决赛,他还要知道这位同学成绩的()A.平均数 B.众数 C.方差 D.中位数10.已知m2-n2=mn,则的值等于()A.1 B.0 C.-1 D.-二、填空题(每小题3分,共24分)11.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是________.12.计算:﹣=_____.13.如图,正方形中,点在边上,,把线段绕点旋转,使点落在直线上的点,则两点间的距离为___________.14.已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是.15.点P(﹣3,4)到x轴和y轴的距离分别是_____.16.在比例尺为1∶100000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离▲km.17.化简的结果为________.18.如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=_______.三、解答题(共66分)19.(10分)如图,是一位护士统计一位病人的体温变化图,请根据统计图回答下列问题:(1)病人的最高体温是达多少?(2)什么时间体温升得最快?(3)如果你是护士,你想对病人说____________________.20.(6分)如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,求证:△DAC∽△CAB.(2)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB=°(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长.21.(6分)已知一次函数y=kx+1经过点(1,2),O为坐标轴原点.(1)求k的值.(2)点P是x轴上一点,且满足∠APO=45°,直接写出P点坐标.22.(8分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.23.(8分)已知:D,E分别为△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BC24.(8分)如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.(1)试探究线段AG与CE的大小关系,并证明你的结论;(2)若AG恰平分∠BAC,且BE=1,试求AB的长;(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.25.(10分)如图,在平面直角坐标系中,直线l1:分别与x轴、y轴交于点B、C,且与直线l2:交于点A.(1)求出点A的坐标(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(10分)如图,四边形ABCD是矩形,把矩形沿直线BD拆叠,点C落在点E处,连接DE,DE与AD交于点M.(1)证明四边形ABDE是等腰梯形;(2)写出等腰梯形ABDE与矩形ABCD的面积大小关系,并证明你的结论.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据平行四边形的性质可得AB∥CD,添加DE=BF后,满足一组对边平行,另一组对边相等,不符合平行四边形的判定方法,进而可判断A项;根据平行四边形的性质可得AB∥CD,AB=CD,进一步即得BE=DF,根据一组对边平行且相等的四边形是平行四边形即可判断B项;根据平行四边形的性质可得AB∥CD,进而根据平行四边形的定义可判断C项;根据平行四边形的性质可证明△ADE≌△CBF,进而可得AE=CF,DE=BF,然后根据两组对边相等的四边形是平行四边形即可判断D项.【详解】解:A、∵四边形ABCD是平行四边形,∴AB∥CD,由DE=BF,不能判定四边形EBFD是平行四边形,所以本选项符合题意;B、∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∵DE∥FB,∴四边形EBFD是平行四边形,所以本选项不符合题意;D、∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,AB=CD,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴AE=CF,DE=BF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意.故选:A.【点睛】本题考查了平行四边形的性质和判定以及全等三角形的判定和性质,属于常考题型,熟练掌握平行四边形的判定和性质是解本题的关键.2、D【解析】
抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A、调查不具广泛性,故A不符合题意;
B、调查不具代表性,故B不符合题意;
C、调查不具代表性,故C不符合题意;
D、样本具有广泛性与代表性,故D符合题意;
故选:D.【点睛】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.3、D【解析】
根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.【详解】A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确;故选:D.【点睛】本题是对特殊四边形判断的考查,熟练掌握平行四边形,矩形,正方形,菱形的判断知识是解决本题的关键.4、D【解析】
根据被开方数是非负数,可得答案.【详解】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.5、B【解析】
根据二次根式有意义的条件得到关于x的不等式,解不等式即得答案.【详解】解:要使有意义,则,解得.故选B.【点睛】本题考查了二次根式有意义的条件,明确二次根式中被开方数非负是求解的关键.6、B【解析】
根据线段垂直平分线的意义得FA=FB,由∠BAC=50°,得出∠ABC=∠ACB=65°,由角平分线的性质推知∠BAF=25°,∠FBE=40°,延长AF交BC于点E,AE⊥BC,根据等腰三角形的“三线合一”的性质得出:∠BFE=50°,∠CFE=50°,即可解出∠BCF的度数.【详解】延长∠BAC的角平分线AF交BC于点E,
∵AF与AB的垂直平分线DF交于点F,
∴FA=FB,
∵AB=AC,∠BAC=50°,
∴∠ABC=∠ACB=65°
∴∠BAF=25°,∠FBE=40°,
∴AE⊥BC,
∴∠CFE=∠BFE=50°,
∴∠BCF=∠FBE=40°.
故选:B.【点睛】本题主要考查了等腰三角形的性质和线段垂直平分线的性质,熟练掌握性质的内容是解答本题的关键.7、C【解析】
设超过200元的部分可以享受的优惠是打n折,根据:实际付款金额=200+(商品原价-200)×,列出y关于x的函数关系式,由图象将x=500、y=410代入求解即可得.【详解】设超过200元的部分可以享受的优惠是打n折,根据题意,得:y=200+(x-200)•,由图象可知,当x=500时,y=410,即:410=200+(500-200)×,解得:n=7,∴超过200元的部分可以享受的优惠是打7折,故选C.【点睛】本题考查了一次函数的实际应用,理解题意根据相等关系列出实际付款金额y与商品原价x间的函数关系式是解题的关键.8、B【解析】
根据加权平均数的公式进行计算即可得.【详解】=37,即这周里张海日平均投递物品件数为37件,故选B.【点睛】本题考查了加权平均数的计算,熟知加权平均数的计算公式是解题的关键.9、D【解析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选D.【点睛】此题考查统计量的选择,解题关键在于掌握中位数的意义.10、C【解析】
根据分式的运算法则即可求出答案.【详解】解:∵m2-n2=mn,且mn≠0,∴,即,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.二、填空题(每小题3分,共24分)11、PA=PB=PC【解析】
解:∵边AB的垂直平分线相交于P,∴PA=PB,∵边BC的垂直平分线相交于P,∴PB=PC,∴PA=PB=PC.故答案为:PA=PB=PC.12、【解析】
根据二次根式的性质,进行计算即可解答【详解】解:﹣.故答案为:﹣.【点睛】此题考查二次根式的化简,解题关键在于掌握运算法则13、或【解析】
分两种情况:点F线段BC上时或在CB的延长线上时,根据正方形的性质及旋转的性质证明△ABF≌△ADE得到BF=DE,即可求出答案.【详解】∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=AD=BC=CD=DE+CE=2+1=3,由旋转得AF=AE,∴△ABF≌△ADE,∴BF=DE=2,如图:当点F线段BC上时,CF=BC-BF=3-2=1,当点F在CB延长线上时,CF=BC+BF=3+2=5,故答案为:1或5.【点睛】此题考查正方形的性质,全等三角形的判定及性质,旋转的性质,正确理解题意分情况解题是关键.14、【解析】
解:如图,取AB的中点D,连接OD、CD,∵正三角形ABC的边长为a,,在△ODC中,OD+CD>OC,∴当O、D、C三点共线时OC最长,最大值为.15、4;1.【解析】
首先画出坐标系,确定P点位置,根据坐标系可得答案.【详解】点P(﹣1,4)到x轴的距离为4,到y轴的距离是1.故答案为:4;1.【点睛】本题考查了点的坐标,关键是正确确定P点位置.16、15【解析】
解:设两地的实际距离为xcm,根据题意得:,解得:x=1500000,∵1500000cm=15km,∴两地的实际距离15km.17、【解析】
首先把分子、分母分解因式,然后约分即可.【详解】解:==【点睛】本题主要考查了分式的化简,正确进行因式分解是解题的关键.18、【解析】解:∵四边形ABCD为正方形,∴∠ABC=90°.∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=PB=.故答案为.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等腰直角三角形性质.三、解答题(共66分)19、(1)1.1℃;(2)14-18;(3)注意身体的健康【解析】
根据折线图可得,(1)这天病人的最高体温即折线图的最高点是1.1°C;(2)14-18时,折线图上升得最快,故这段时间体温升得最快;(3)根据折线图分析即可得出答案,答案不唯一,如注意身体的健康,符合折线图即可.【详解】(1)由图可知:病人的最高体温是达1.1℃;(2)由图可知:体温升得最快的时间段为:14-18;(3)注意身体的健康(只要符合图形即可,答案不唯一)【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长的速度.20、(1)见解析;(2)120°;(3)【解析】
(1)先判断出,即可得出结论;
(2)由已知条件可证得△ADC∽△ACB,得出D=∠4,再由已知条件和三角形内角和定理得出∠1+2∠1=180°,求出∠1=60°,即可得出∠DAB的度数;
(3)由已知得出AC2=AB•AD,∠DAC=∠CAB,证出△ADC∽△ACB,得出∠D=∠ACB=90°,由勾股定理求出AB,即可得出AD的长.【详解】(1)证明:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,∴AC2=AB•AD,∴,∵∠DAB为“可分角”,∴∠CAD=∠BAC,∴△DAC∽△CAB;(2)解:如图所示:∵AC平分∠DAB,∴∠1=∠2,∵AC2=AB•AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠4,∵∠DCB=∠DAB,∴∠DCB=∠3+∠4=2∠1,∵∠1+∠D+∠3=∠1+∠4+∠3=180°,∴∠1+2∠1=180°,解得:∠1=60°,∴∠DAB=120°;故答案为:120;(3)解:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,∴AC2=AB•AD,∠DAC=∠CAB,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB=90°,∴AB=,∴AD=.故答案为.【点睛】此题考查相似形综合题目,相似三角形的判定与性质,三角形内角和定理,勾股定理,新定义四边形,熟练掌握新定义四边形,证明三角形相似是解决问题的关键.21、(1)1(2)P(3,0)或P(−1,0).【解析】
(1)直接把点A(1,2)代入一次函数y=kx+1,求出k的值即可;(2)求出直线y=x+1与x轴的交点,进而可得出结论.【详解】(1)∵一次函数y=kx+1经过A(1,2),∴2=k+1,∴k=1;(2)如图所示,∵k=1,∴一次函数的解析式为y=x+1,∴B(0,1),C(−1,0),∴∠ACO=45°,∴P(−1,0);∴P关于直线x=1与P对称,∴P(3,0).∴P(3,0)或P(−1,0).【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于作辅助线22、(1);(2)作图见解析.【解析】分析:(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.详解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.点睛:本题考查了作图-应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.23、证明见解析【解析】
延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.【详解】证明:延长DE到F,使EF=DE.连接CF.在△ADE和△CFE中,∵AE=CE,∠AED=∠CEF,DE=FE,∴△ADE≌△CFE.∴AD=CF,∠A=∠ECF∴AD∥CF,即BD∥CF.又∵BD=AD=CF,∴四边形DBCF是平行四边形.∴DE∥BC,且DF=BC.∴DE=DF=BC.【点睛】本题考查三角形的中位线定理的证明,解题关键是掌握等三角形的判定和全等三角形的性质以及平行四边形的判定和性质.24、(1)AG=CE.,理由见解析;(2)+1;;(3)AG=CE仍然成立,理由见解析;【解析】
(1)根据正方形的性质可得AB=CB,BG=BE,∠ABG=∠CBE=90°,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证;(2)利用角平分线的性质以及正方形的性质得出MC=MG,进而利用勾股定理得出GC的长,即可得出AB的长;(3)先求出∠ABG=∠CBE,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证.【详解】(1)AG=CE.理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABG=∠CBE=90°,在△ABG和△CBE中,∵,∴△ABG≌△CBE(SAS),∴AG=CE;(2)过点G作GM⊥AC于点M,∵AG恰平分∠BAC,MG⊥AC,GB⊥AB,∴BG=MG,∵BE=1,∴MG=BG=1,∵AC平分∠DCB,∴∠BCM=45°,∴MC=MG=1,∴GC=,∴AB的长为:AB=BC=+1;(3)AG=CE仍然成立.理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABC=∠EBG=90°,∵∠ABG=∠ABC−∠CBG,∠CBE=∠EBG−∠CBG,∴∠ABG=∠CBE,在△ABG和△CBE中,∵,∴△ABG≌△CBE(SAS),∴AG=CE.【点睛】此题考查几何变换综合题,解题关键在于证明△ABG和△CBE全等.25、(1)A(6,3);(2)y=﹣x+6;(3)存在满足条件的点的P,其坐标为(6,0)或(3,﹣3)或(,+6).【解析】
(1)把x=0,y=0分别代入直线L1,即可求出y和x的值,即得到B、C的坐标,解由直线BC和直线OA的方程组即可求出A的坐标;(2)设D(x,x),代入面积公式即可求出x,即得到D的坐标,设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入即可求出直线CD的函数表达式;(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,根据菱形的性质能写出Q的坐标.【详解】(1)解方程组,得,∴A(6,3);(2)设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年沙湾区铜河集团面试题库及答案
- 2025年电气设备工程师面试题库及答案
- 2025年新疆教资结构化面试题库及答案
- 2025年昔阳县事业单位护理考试及答案
- 2025年甘肃省甘南事业单位考试及答案
- 2025年公务员组织协调面试题库及答案
- 2024年米易县招教考试备考题库及答案解析(夺冠)
- 2025年晴隆县幼儿园教师招教考试备考题库含答案解析(必刷)
- 2025年广州医科大学马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 2025年阳新县招教考试备考题库含答案解析(必刷)
- 2026年交通运输企业春节节后开工第一课安全专题培训课件
- 音乐场所卫生管理制度
- 标书财务制度
- 四川发展控股有限责任公司会计岗笔试题
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库及一套答案详解
- 天津津静收费站雷击事故深度剖析与防护策略探究
- 2025山西焦煤集团所属华晋焦煤井下操作技能岗退役军人招聘50人笔试参考题库带答案解析
- 儿童骨科主任论儿童骨科
- 2026年齐齐哈尔高等师范专科学校单招(计算机)测试模拟题库必考题
- 送钱表文完整规范版本(含民俗禁忌)
- 2025年烟花炮竹安全培训题库及答案解析
评论
0/150
提交评论