版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市2024年八年级下册数学期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.定义:在同一平面内画两条相交、有公共原点的数轴x轴和y轴,交角a≠90°,这样就在平面上建立了一个斜角坐标系,其中w叫做坐标角,对于坐标平面内任意一点P,过P作y轴和x轴的平行线,与x轴、y轴相交的点的坐标分别是a和b,则称点P的斜角坐标为(a,b).如图,w=60°,点P的斜角坐标是(1,2),过点P作x轴和y轴的垂线,垂足分别为M、N,则四边形OMPN的面积是(
)A.1336 B.13382.如图,在平行四边形ABCD中,AB=10,AD=12,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.8 B. C. D.63.下列函数关系式:①y=-2x,②y=−,③y=-2x2,④y=2,⑤y=2x-1.其中是一次函数的是()A.①⑤ B.①④⑤ C.②⑤ D.②④⑤4.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.5.如图,菱形中,点、分别是、的中点,若,,则的长为()A. B. C. D.6.如图,直线过点和点,则方程的解是()A. B. C. D.7.已知温州至杭州铁路长为380千米,从温州到杭州乘“G”列动车比乘“D”列动车少用20分钟,“G”列动车比“D”列动车每小时多行驶30千米,设“G”列动车速度为每小时x千米,则可列方程为()A. B.C. D.8.李雷同学周末晨练,他从家里出发,跑步到公园,然后在公园玩一会儿篮球,再走路回家,那么,他与自己家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A. B. C. D.9.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm10.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s二、填空题(每小题3分,共24分)11.在实数范围内分解因式:3x2﹣6=_____.12.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160cm和165cm之间的学生大约有_______人.13.如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E.F分别是AO、AD的中点,若AC=8,则EF=___.15.如图,以位似中心,扩大到,各点坐标分别为(1,2),(3,0),(4,0)则点坐标为_____________.16.如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.17.如图,函数与函数的图象相交于A、B两点,轴于点C,轴于点D,则四边形ADBC的面积为___________.18.已知一次函数()经过点,则不等式的解集为__________.三、解答题(共66分)19.(10分)已知,矩形中,,的垂直平分线分别交于点,垂足为.(1)如图1,连接,求证:四边形为菱形;(2)如图2,动点分别从两点同时出发,沿和各边匀速运动一周,即点自停止,点自停止.在运动过程中,①已知点的速度为每秒,点的速度为每秒,运动时间为秒,当四点为顶点的四边形是平行四边形时,则____________.②若点的运动路程分别为(单位:),已知四点为顶点的四边形是平行四边形,则与满足的数量关系式为____________.20.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?21.(6分)如图:是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使8千米时,收费应为元;(2)从图象上你能获得哪些信息?(请写出2条)①________②____________________________(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.22.(8分)已知三角形纸片,其中,,点分别是上的点,连接.(1)如图1,若将纸片沿折叠,折叠后点刚好落在边上点处,且,求的长;(2)如图2,若将纸片沿折叠,折叠后点刚好落在边上点处,且.试判断四边形的形状,并说明理由;求折痕的长.23.(8分)在矩形中ABCD,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对位点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求的值.24.(8分)如图,点分别是对角线上两点,.求证:.25.(10分)如图,▱ABCD中,AB=2cm,AC=5cm,S▱ABCD=8cm2,E点从B点出发,以1cm每秒的速度,在AB延长线上向右运动,同时,点F从D点出发,以同样的速度在CD延长线上向左运动,运动时间为t秒.(1)在运动过程中,四边形AECF的形状是____;(2)t=____时,四边形AECF是矩形;(3)求当t等于多少时,四边形AECF是菱形.26.(10分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:(1)甲成绩的中位数是______,乙成绩的众数是______;(2)经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
添加辅助线,将四边形OMPN转化为直角三角形和平行四边形,因此过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,易证四边形OAPB是平行四边形,利用平行四边形的性质,可知OB=PA,OA=PB,由点P的斜角坐标就可求出PB、PA的长,再利用解直角三角形分别求出PN,NB,PM,AM的长,然后根据S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB,利用三角形的面积公式和平行四边形的面积公式,就可求出结果.【详解】解:过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,∴四边形OAPB是平行四边形,∠NBP=w=∠PAM=60°,
∴OB=PA,OA=PB∵点P的斜角坐标为(1,2),∴OA=1,OB=2,∴PB=1,PA=2,∵PM⊥x轴,PN⊥y轴,∴∠PMA=∠PNB=90°,在Rt△PAM中,∠PAM=60°,则∠APM=30°,∴PA=2AM=2,即AM=1PM=PAsin60°∴PM=3∴S△PAM=1在Rt△PBN中,∠PBN=60°,则∠BPN=30°,∴PB=2BN=1,即BN=1PN=PBsin60°∴PN=3∴S△PBN=12PN⋅BN=∵S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB=故答案为:B【点睛】本题考查了新概念斜角坐标系、图形与坐标、含30°角直角三角形的性质、三角函数、平行四边形的判定与性质、三角形面积与平行四边形面积的计算等知识,熟练掌握新概念斜角坐标系与含30°角直角三角形的性质是解题的关键.2、A【解析】
由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=12,∴BE=6,∴AE=,故选:A.【点睛】本题主要考查了平行四边形的性质,作图-轴对称变换,掌握平行四边形的性质,作图-轴对称变换是解题的关键.3、A【解析】
根据一次函数的定义条件进行逐一分析即可.【详解】解:①y=-2x是一次函数;②y=−自变量次数不为1,故不是一次函数;③y=-2x2自变量次数不为1,故不是一次函数;④y=2是常函数;⑤y=2x-1是一次函数.所以一次函数是①⑤.故选:A.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.4、D【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,是轴对称图形,故本选项不符合题意;
B、不是中心对称图形,是轴对称图形,故本选项不符合题意;
C、是中心对称图形,不是轴对称图形,故本选项不符合题意;
D、既是中心对称图形,又是轴对称图形,故本选项符合题意.
故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、A【解析】
由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO,由勾股定理可求BO=4,可得BD=8,由三角形中位线定理可求EF的长【详解】解:如图,连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=3,BO=DO,∴,∴BD=2BO=8,∵点E、F分别是AB、AD的中点,∴EF=BD=4,故选:A.【点睛】本题考查了菱形的性质,三角形中位线定理,本题中根据勾股定理求OB的值是解题的关键.6、B【解析】
一次函数y=kx+b的图象与x轴的交点横坐标就是kx+b=0的解.【详解】解:∵直线y=ax+b过点B(−2,0),∴方程ax+b=0的解是x=−2,故选:B.【点睛】此题主要考查了一次函数与一元一次方程,关键是掌握任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于确定已知直线y=ax+b与x轴的交点的横坐标的值.7、D【解析】
设“G”列动车速度为每小时x千米,则“D”列动车速度为每小时(x-30)千米,根据时间=路程÷速度结合行驶380千米“G”列动车比“D”列动车少用小时(20分钟),即可得出关于x的分式方程,此题得解.【详解】解:设“G”列动车速度为每小时x千米,则“D”列动车速度为每小时(x﹣30)千米,依题意,得:.故选D.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.8、B【解析】
他跑步到离家较远的公园,打了一会儿篮球后慢步回家,去的时候速度快,用的时间少,然后在公园打篮球路程是不变的,回家慢步用的时间多.据此解答.【详解】根据以上分析可知能大致反映当天李雷同学离家的距离y与时间x的关系的是B.故选:B.【点睛】本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系是解答本题的关键.9、B【解析】
解:如图所示:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB=,∵菱形ABCD的面积=AB•DE=AC•BD=×8×6=24,∴DE==4.8;故选B.10、C【解析】
根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【详解】∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;
∵根据数据表,可得温度越高,声速越快,∴选项B正确;
∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;
∵324-318=6(m/s),330-324=6(m/s),336-330=6(m/s),342-336=6(m/s),348-342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选C.【点睛】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.二、填空题(每小题3分,共24分)11、3(x+)(x﹣)【解析】
先提取公因式3,然后把2写成2,再利用平方差公式继续分解因式即可.【详解】3x2-6,=3(x2-2),=3(x2-2),=3(x+)(x-).故答案为:3(x+)(x-).【点睛】本题考查了实数范围内分解因式,注意把2写成2的形式继续进行因式分解.12、1【解析】
根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数【详解】解:由题意可知:150名样本中160~165的人数为30人,则其频率为,则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.13、1【解析】
根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.【详解】当OB=1cm时,四边形ABCD是平行四边形,∵BD=16cm,OB=1cm,∴BO=DO,又∵AO=OC,∴四边形ABCD是平行四边形,故答案为1.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.14、2【解析】
由矩形的性质可知:矩形的两条对角线相等,可得BD=AC=8,即可得OD=4,在△AOD中,EF为△AOD的中位线,由此可求的EF的长.【详解】∵四边形ABCD为矩形,∴BD=AC=8,又∵矩形对角线的交点等分对角线,∴OD=4,又∵在△AOD中,EF为△AOD的中位线,∴EF=2.故答案为2.【点睛】此题考查三角形中位线定理,解题关键在于利用矩形的性质得到BD=AC=815、【解析】
由图中数据可得两个三角形的位似比,进而由点A的坐标,结合位似比即可得出点C的坐标.【详解】解:∵△AOB与△COD是位似图形,
OB=3,OD=1,所以其位似比为3:1.
∵点A的坐标为A(1,2),
∴点C的坐标为.故答案为:.【点睛】本题主要考查了位似变换以及坐标与图形结合的问题,解题的关键是根据题意求得其位似比.16、【解析】
根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【详解】解:如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=3,∠D=90°,
在Rt△ADE中,AE=∵S△ABE=S矩形ABCD=3=•AE•BF,
∴BF=.故答案为:.【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.17、1【解析】
解出AB两点的坐标,可判断出四边形ADBC是平行四边形,由平行四边形对角线平分平行四边形的面积,所以四边形ADBC的面积为.【详解】解:解二元一次方程方程组解得或则A点坐标为(-2,2),B点坐标为(2,-2)C点坐标为(0,2),D点坐标为(2,-2)所以AC∥BD,AC=BD=2所以四边形ADBC是平行四边形则==2××2×4=1,故答案为1.【点睛】本题考查了正比例函数与反比例函数交点组成四边形求面积的问题,掌握相关知识点是解决本题的关键.18、【解析】
先把(-1,0)代入y=kx+b得b=k,则k(x-3)+b<0化为k(x-3)+k<0,然后解关于x的不等式即可.【详解】解:把(-1,0)代入y=kx+b得-k+b=0,解b=k,则k(x-3)+b<0化为k(x-3)+k<0,而k<0,所以x-3+1>0,解得x>1.故答案为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共66分)19、(1)见解析;(2)①;②【解析】
(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;
(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;
②分三种情况讨论可知a与b满足的数量关系式.【详解】(1)证明:∵四边形是矩形,∴∴,∵垂直平分,垂足为,∴,∴,∴,∴四边形为平行四边形,又∵∴四边形为菱形,(2)①秒.显然当点在上时,点在上,此时四点不可能构成平行四边形;同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.∴以四点为顶点的四边形是平行四边形时,∴点的速度为每秒,点的速度为每秒,运动时间为秒,∴,∴,解得∴以四点为顶点的四边形是平行四边形时,秒.②与满足的数量关系式是,由题意得,以四点为顶点的四边形是平行四边形时,点在互相平行的对应边上,分三种情况:i)如图1,当点在上、点在上时,,即,得.ii)如图2,当点在上、点在上时,,即,得.iii)如图3,当点在上、点在上时,,即,得.综上所述,与满足的数量关系式是.【点睛】此题考查线段垂直平分线的性质,菱形的判定及性质,勾股定理,全等三角形的判定及性质,平行四边形的判定及性质,解题中注意分类讨论的思想.20、(1)应安排4天进行精加工,8天进行粗加工(2)①=②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元【解析】
解:(1)设应安排天进行精加工,天进行粗加工,根据题意得解得答:应安排4天进行精加工,8天进行粗加工.(2)①精加工吨,则粗加工()吨,根据题意得=②要求在不超过10天的时间内将所有蔬菜加工完,解得又在一次函数中,,随的增大而增大,当时,精加工天数为=1,粗加工天数为安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.21、(1)11;(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等;(3).【解析】试题分析:图象是分段函数,需要分别观察x轴y轴表示的意义,再利用图象过已知点,利用待定系数法求函数关系式.(1)由图知当行使8千米时,收费应为11元.(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等(3)设函数是y=kx+b(k图象过(3,5)(8,11),所以,解得,所以(x).22、(1);(2)边形是菱形,见解析,【解析】
(1)首先根据折叠的性质,得出AE=DE,AF=DF,然后根据等腰三角形三线合一的性质,得出∠AFE=90°,判定,再根据得出和的相似比为,即可得解;(2)①由折叠和平行的性质,得出,即可判定四边形是菱形;②首先过点作于点,由得出,得出,然后根据,得出,进而得出FN、EN,根据勾股定理,即可求出EF.【详解】(1)根据题意,得AE=DE,AF=DF∴根据等腰三角形三线合一的性质,得∠AFE=90°又∵∠EAF=∠BAC,∠AEF=∠ABC∴又∵,∴,∴和的相似比为即又∵,,∴(2)四边形是菱形由折叠的性质,得AE=EM,AF=FM,∠AEF=∠FEM,∠AFE=∠EFM又∵∴∠FEM=∠AFE∴∠AEF=∠AFE,∠FEM=∠EFM∴,∴四边形是菱形过点作于点∵∴∴∵,,∴∴∴又∵∴∴∴∴,又∵∴∴【点睛】此题主要考查折叠、平行线、等腰三角形和菱形的判定,熟练掌握,即可解题.23、(1)见解析;(2)①见解析;②【解析】
(1)先判断出,再判断出,即可得出结论;(2)①利用折叠的性质,得出,,进而判断出即可得出结论;②判断出,得出比例式建立方程求解即可得出,,再判断出,进而求出,即可得出结论;【详解】解:(1)在矩形中,,∵是中点∴=在和中,∴(2)①在矩形,∵沿折叠得到∴,∵∴∴∴∴②当时∵∴∵∴∵∴∴设∴∴∴或∵∴,∴,由折叠得,∴∵∴∴设∴∴∴在中,∴【点睛】本题考查了全等三角形的判定与性质、矩形的性质、翻折变换以及相似三角形的判定与性质,综合性较强,结合图形认真理解题意从而正确解题.24、见解析【解析】
用SAS证明△BAF≌△DCE即可说明∠DEC=∠BFA.【详解】证明::∵四边形为平行四边形,∴,∴,又,∴≌,∴.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定和性质,解决这类问题一般是四边形转化为三角形处理.25、(1)四边形AECF是平行四边形;理由见解析;(2)t=1;(3)t=【解析】
(1)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 33523.73-2025产品几何技术规范(GPS) 表面结构:区域法 第73部分:实物标准表面缺陷的术语和定义 》
- 深度解析(2026)《GBT 33426-2016胶鞋 有机锡化合物含量试验方法》
- 2026届高三生物二轮复习课件:大单元3 细胞的增殖、分化、衰老和死亡等生命历程 限时练8 大单元三查缺补漏保分练
- 医疗数据安全治理:区块链协同创新
- 医疗数据安全应急演练与预案优化
- 医疗数据安全培训的区块链分布式存储应用
- 医疗数据安全合规审计与风险评估
- 医疗数据安全共享的政策支持体系研究
- 医疗数据安全共享的区块链技术标准体系
- 胆汁反流课件
- 喷绘安装合同范本
- 全反力、摩擦角、自锁现象、辅助角-习题答案
- 2026年湖南食品药品职业学院单招职业适应性测试题库带答案详解
- 《AQ 4272-2025铝镁制品机械加工粉尘防爆安全规范》专题研究报告
- 【MOOC】英文技术写作-东南大学 中国大学慕课MOOC答案
- 区域经济空间结构理论之增长极理论
- 北京工商大学大一高等数学上册期末考试卷及答案
- 《政府公共关系》12课件
- 单为民、血栓与止血常规七项检测课件
- 国家开放大学《市场营销学》章节练习参考答案
- 综掘机技术规格书
评论
0/150
提交评论