陕西省西安工业大附属中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第1页
陕西省西安工业大附属中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第2页
陕西省西安工业大附属中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第3页
陕西省西安工业大附属中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第4页
陕西省西安工业大附属中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安工业大附属中学2024届八年级数学第二学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,延长矩形ABCD的边BC至点E,使CEBD,连接AE,若∠ADB40,则∠E的度数是()A.20 B.25 C.30 D.352.点(1,-6)关于原点对称的点为()A.(-6,1) B.(-1,6) C.(6,-1) D.(-1,-6)3.在Rt△ABC中,∠ACB=90°,AB=6cm,D为AB的中点,则CD等于()A.2cm B.2.5cm C.3cm D.4cm4.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.30° D.45°5.二次根式中字母a的取值范围是()A.a≥0 B.a≤0 C.a<0 D.a≤﹣26.数据:2,5,4,5,3,4,4的众数与中位数分别是()A.4,3 B.4,4 C.3,4 D.4,57.一个多边形每个外角都是,则该多边形的边数是()A.4 B.5 C.6 D.78.已知平行四边形ABCD中,∠B=2∠A,则∠A=()A.36° B.60° C.45° D.80°9.如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到ΔAEF,若AC=,则阴影部分的面积为(

)A.1 B. C. D.10.某校八(5)班为筹备班级端午节纪念爱国诗人屈原联谊会,班长对全班学生爱吃哪几种水果作了民意调查,最终决定买哪些水果.下面的调查数据中您认为最值得关注的是()A.中位数 B.平均数 C.众数 D.方差二、填空题(每小题3分,共24分)11.方程x3=8的根是______.12.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示。下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是___(填序号).13.某超市促销活动,将三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装三种水果;乙种方式每盒分别装三种水果.甲每盒的总成本是每千克水果成本的倍,每盒甲的销售利润率为;每盒甲比每盒乙的售价低;每盒丙在成本上提高标价后打八折出售,获利为每千克水果成本的倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为时,则销售总利润率为__________.14.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为______,点的坐标为______.15.如果,那么的值是___________.16.如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为_____.17.如图,在▱ABCD中,已知AD=9cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE=______cm.18.如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于_____.三、解答题(共66分)19.(10分)如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN;(3)若点P在线段AC上移动,其他不变,设PC=x,AE=y,求y关于x的解析式.20.(6分)综合与探究问题情境:在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.“兴趣小组”写出的两个数学结论是:①S△OMC+S△ONC=S正方形ABCD;②BM1+CM1=1OM1.问题解决:(1)请你证明“兴趣小组”所写的两个结论的正确性.类比探究:(1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.21.(6分)1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升.两个气球都匀速上升了50min.设气球上升时间为x(x≥0).(Ⅰ)根据题意,填写下表上升时间/min1030…x1号探测气球所在位置的海拔/m15…2号探测气球所在位置的海拔/m30…(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(Ⅲ)当0≤x≤50时,两个气球所在位置的海拔最多相差多少米?22.(8分)在中,,是边上的中线,是的中点,过点作交的延长线于点,连接.(1)如图1,求证:(2)如图2,若,其它条件不变,试判断四边形的形状,并证明你的结论.23.(8分)如图,在ABCD中,AB∥CD,AD=BC,∠B=60°,AC平分∠DAB.(1)求∠ACB的度数;(2)如果AD=1,请直接写出向量和向量的模.24.(8分)解不等式组,并将解集在数轴上表示出来.25.(10分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)断⊿BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形?并证明你的判断.26.(10分)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.(1)请直接写出点A的坐标:______;(2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.①求k的值;②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

连接,由矩形性质可得、,知,而,可得度数.【详解】连接,四边形是矩形,,,且,,又,,,,,即.故选.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.2、B【解析】

根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,可得答案.【详解】解:点(1,-6)关于原点对称的点的坐标是(-1,6);故选:B.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.3、C【解析】

根据直角三角形斜边上的中线等于斜边的一半可得CD=12AB【详解】解:∵∠ACB=90°,D为AB的中点,

∴CD=12AB=12×6=3cm.

故选:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.4、D【解析】

过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.【详解】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中,∵,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∠F=90°,∴△BEF为等腰直角三角形,∴∠EBF=45°,又∠CBF=90°,则∠CBE=45°.故选D.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.5、B【解析】

根据被开方数是非负数,可得答案.【详解】由题意,得﹣2a≥1,解得a≤1.故选B.【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数是是非负数是解题的关键.6、B【解析】

根据众数及中位数的定义,求解即可.【详解】解:将数据从小到大排列为:2,3,1,1,1,5,5,∴众数是1,中位数是1.故选B.【点睛】本题考查众数;中位数的概念.7、B【解析】

用多边形的外角和360°除以72°即可.【详解】解:边数n=360°÷72°=1.故选:B.【点睛】本题考查了多边形的外角和等于360°,是基础题,比较简单.8、B【解析】

根据平行四边形的性质得出BC∥AD,推出∠A+∠B=180°,求出∠A的度数即可.【详解】∵四边形ABCD是平行四边形,∴BC∥AD,∴∠A+∠B=180°.∵∠B=2∠A,∴∠A=60°.故选B.【点睛】本题考查了平行四边形的性质,平行线的性质的应用,关键是平行四边形的邻角互补.9、C【解析】

利用旋转得出∠DAF=30°,就可以利用直角三角形性质,求出阴影部分面积.【详解】解:如图.设旋转后,EF交AB与点D,因为等腰直角三角形ABC中,∠BAC=90°,又因为旋转角为15°,所以∠DAF=30°,因为AF=AC=,所以DF=1,所以阴影部分的面积为.故选:C.10、C【解析】

根据平均数、中位数、众数、方差的意义进行分析选择.【详解】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级端午节纪念爱国诗人屈原联谊会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.二、填空题(每小题3分,共24分)11、2【解析】

直接进行开立方的运算即可.【详解】解:∵x3=8,∴x=38故答案为:2.【点睛】本题考查了求一个数的立方根.12、①②③.【解析】

根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【详解】由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15−9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19−9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000−1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点睛】此题考查一次函数的应用,解题关键在于结合函数图象进行解答.13、20%.【解析】

分别设每千克A、B、C三种水果的成本为x、y、z,设丙每盒成本为m,然后根据题意将甲、乙、丙三种方式的每盒成本和利润用x表示出来即可求解.【详解】设每千克A、B、C三种水果的成本分别为为x、y、z,依题意得:

6x+3y+z=12.5x,

∴3y+z=6.5x,

∴每盒甲的销售利润=12.5x•20%=2.5x

乙种方式每盒成本=2x+6y+2z=2x+13x=15x,

乙种方式每盒售价=12.5x•(1+20%)÷(1-25%)=20x,

∴每盒乙的销售利润=20x-15x=5x,

设丙每盒成本为m,依题意得:m(1+40%)•0.8-m=1.2x,

解得m=10x.

∴当销售甲、乙、丙三种方式的水果数量之比为2:2:5时,

总成本为:12.5x•2+15x•2+10x•5=105x,

总利润为:2.5x•2+5x×2+1.2x•5=21x,

销售的总利润率为×100%=20%,

故答案为:20%.【点睛】此题考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解题的关键.14、(16,32)(−21009,−21010).【解析】

根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8、A9等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.【详解】当x=1时,y=2,∴点A1的坐标为(1,2);当y=−x=2时,x=−2,∴点A2的坐标为(−2,2);同理可得:A3(−2,−4),A4(4,−4),A5(4,8),A6(−8,8),A7(−8,−16),A8(16,−16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数).∵2019=504×4+3,∴点A2019的坐标为(−2504×2+1,−2504×2+2),即(−21009,−21010).故答案为(16,32),(−21009,−21010).【点睛】此题主要考查一次函数与几何规律探索,解题的关键是根据题意得到坐标的变化规律.15、【解析】

由得到再代入所求的代数式进行计算.【详解】∵,∴,∴,故答案为:.【点睛】此题考查分式的求值计算,根据已知条件求出m与n的等量关系是解题的关键.16、(8,33)【解析】

根据30度直角三角形的性质得到AD,由勾股定理得到DO,再根据平行线的性质即可得到答案.【详解】∵点A坐标为(﹣3,0)∴AO=3∵∠ADO=30°,AO⊥DO∴AD=2AO=6,∵DO=A∴DO=33∴D(0,33)∵四边形ABCD是平行四边形∴AB=CD=8,AB∥CD∴点C坐标(8,33)故答案为(8,33)【点睛】本题考查30度直角三角形的性质、勾股定理和平行线的性质,解题的关键是掌握30度直角三角形的性质、勾股定理和平行线的性质.17、1【解析】

由平行四边形对边平行得AD∥BC,再根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=9cm,CD=AB=6cm,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CE=CD=6cm,∴BE=BC-EC=1cm,故答案为:1.【点睛】本题考查了平行四边形性质,等腰三角形的判定,平行线的性质,角平分线的定义,求出CE=CD=6cm是解题的关键.18、1【解析】

根据四边形ABCD是矩形,可知因为所以△AOB是等边三角形,由三线合一性质可知的长度【详解】∵四边形ABCD是矩形,∴△AOB是等边三角形,故答案为1.【点睛】本题主要考查了矩形的性质,等边三角形的性质,熟知矩形的对角线相等且相互平分和等边三角形三线合一的性质是解题关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)y=﹣x+1.【解析】

(1)由四边形ABCD是正方形,易得∠BAD=90°,AC平分∠BAD,又由PM⊥AD,PN⊥AB,即可证得四边形PMAN是正方形;(2)由四边形PMAN是正方形,易证得△EPM≌△BPN,即可证得:EM=BN;(3)首先过P作PF⊥BC于F,易得△PCF是等腰直角三角形,继而证得△APM是等腰直角三角形,可得AP=AM=(AE+EM),即可得方程﹣x=(y+x),继而求得答案.【详解】(1)∵四边形ABCD是正方形,∴AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,又∵∠BAD=90°,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∴四边形PMAN是正方形;(2)∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN;(3)过P作PF⊥BC于F,如图所示:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=1,∠PCF=45°,∴AC==,△PCF是等腰直角三角形,∴AP=AC﹣PC=﹣x,BN=PF=x,∴EM=BN=x,∵∠PAM=45°,∠PMA=90°,∴△APM是等腰直角三角形,∴AP=AM=(AE+EM),即﹣x=(y+x),解得:y=﹣x+1.【点睛】本题是四边形的综合题.考查了正方形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的判定与性质.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.20、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.【解析】

(1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;(1)同(1)的方法即可得出结论.【详解】解:(1)①∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOC﹣∠MOC=∠MON﹣∠MOC,∴∠BOM=∠COM,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;②由①知,△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1;(1)结论①不成立,理由:∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=BD,OC=AC,AC=BD,AC⊥BD,∠ABC=∠BCD=90°,AC平分∠BCD,BD平分∠ABC,∴OB=OC,∠BOC=90°,∠OBC=∠OCD=45°,∴∠OBM=∠OCN=135°,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOM=∠CON,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC﹣S△BOM=S△OMC﹣S△CON=S△BOC=S正方形ABCD,∴结论①不成立;结论②成立,理由:如图(1)连接MN,∵△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1,∴结论②成立.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.21、(1)35;;30;;(2)此时气球上升了20min,都位于海拔25m的高度;(3)当时,y最大值为15.【解析】

(Ⅰ)根据距离=速度×时间,分别计算即可得答案;(Ⅱ)根据上升的高度相同列方程可求出x的值,进而可求出两个气球所在高度;(Ⅲ)设两个气球在同一时刻所在的位置的海拔相差m,由(Ⅱ)可知x=20时,两气球所在高度相同,当0≤x<20时,y=-0.5x+10,当20<x≤50时,y=0.5x-10,根据一次函数的性质分别求出最大值,比较即可得答案.【详解】(1)30×1+5=35,x+5,10×0.5+15=20,0.5x+15,故答案为:35;;20;(2)两个气球能位于同一高度.根据题意,,解得,∴.答:能位于同一高度,此时气球上升了20min,都位于海拔25m的高度.(3)设两个气球在同一时刻所在的位置的海拔相差ym由(Ⅱ)可知x=20时,两气球所在高度相同,∴①当0≤x<20时,由题意,可知1号探测气球所在位置始终低于2号气球,则.∵-0.5<0,∴y随x的增大而减小,∴当时,y取得最大值10.②当20<x≤50时,由题意,可知1号探测气球所在位置始终高于2号气球,则.∵0.5>0,∴y随x的增大而增大,∴当时,y取得最大值15.综上,当时,y最大值为15.答:两个气球所在位置的海拔最多相差15m.【点睛】本题考查一次函数的应用,根据题意,得出函数关系式并熟练掌握一次函数的性质是解题关键.22、(1)见解析;(2)四边形为正方形,见解析【解析】

(1)先证明得到AF=DB,于是可证;(2)先证明四边形是平行四边形,再加一组邻边相等证明它是菱形,最后利用等腰三角形三线合一的性质证明有一个直角,从而证明它是正方形.【详解】(1)证明:∵是的中点,,,又,,,是边上的中线,,;(2)解:四边形为正方形,理由如下:由(1)得,又,∴四边形为平行四边形,在中,是边上的中线,,∴四边形为菱形,,是边上的中线,∴四边形为正方形.【点睛】本题考查了正方形的判定,涉及的知识点有直角三角形斜边中线的性质,全等三角形的判定、平行四边形及菱形、正方形的判定,掌握相关性质定理进行推理论证是解题关键.23、(1)∠ACB=90°;(1)模分别为1和1.【解析】

(1)证明四边形ABCD是等腰梯形即可解决问题;(1)求出线段CD、AB的长度即可;【详解】(1)∵CD∥AB,AD=BC,∴四边形ABCD是等腰梯形,∴∠DAB=∠B=60°,∵AC平分∠DAB,∴∠CAB=∠DAB=30°,∴∠B+∠CAB=90°,∴∠ACB=90°.(1)∵CD∥AB,∴∠DCA=∠CAB=∠CAD=30°,∴AD=CD=BC=1,在Rt△ABC中,∵∠CAB=30°,∠ACB=90°,∴AB=1BC=1,∵++=,∴向量和向量++的模分别为1和1.【点睛】本题考查平面向量、等腰梯形的判定和性质、等腰三角形的判定和性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、,数轴表示见解析【解析】

分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:由①去括号、移项、合并同类项,得,解得;由②去分母、移项、合并同类项,得解得所以不等式组的解集为不等式组的解集在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.25、(1)△BEC是直角三角形,理由见解析;(2)四边形EFPH为矩形,证明见解析;【解析】

(1)由矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;(2)由矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;【详解】(1)△BEC是直角三角形,理由是:∵矩形ABCD,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE===,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论