版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省来安县联考数学八年级下册期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,,垂足为,,,则的长为()A. B. C. D.2.如果a>b,那么下列结论中,错误的是()A.a﹣3>b﹣3 B.3a>3b C. D.﹣a>﹣b3.若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为()A.34cm B.30cm C.29cm D.17cm4.如图,已知点在反比例函数()的图象上,作,边在轴上,点为斜边的中点,连结并延长交轴于点,则的面积为()A. B. C. D.5.一次函数y=-3x+2的图象不经过()A.第四象限 B.第三象限 C.第二象限 D.第一象限6.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形7.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。设甲每天加工服装x件。由题意可得方程()A. B.C. D.8.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理9.若使二次根式在实数范围内有意义,则的取值范围是()A. B. C. D.10.下列各曲线中哪个不能表示y是x的函数的是()A. B. C. D.11.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.12.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2二、填空题(每题4分,共24分)13.在函数y=中,自变量x的取值范围是_____.14.比较大小:(填“>”或“<”或“=”).15.在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为__________.16.如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n=________17.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为__________.18.两个相似三角形的周长分别为8和6,若一个三角形的面积为36,则另一个三角形的面积为________.三、解答题(共78分)19.(8分)一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数甲______________88乙______________9______________(2)已知甲组学生成绩的方差,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.20.(8分)如图,在平面直角坐标系中,A(0,8),B(﹣4,0),线段AB的垂直平分线CD分别交AB、OA于点C、D,其中点D的坐标为(0,3).(1)求直线AB的解析式;(2)求线段CD的长;(3)点E为y轴上一个动点,当△CDE为等腰三角形时,求E点的坐标.21.(8分)在坐标系下画出函数的图象,(1)正比例函数的图象与图象交于A,B两点,A在B的左侧,画出的图象并求A,B两点坐标(2)根据图象直接写出时自变量x的取值范围(3)与x轴交点为C,求的面积22.(10分)(1)解方程:;(2)解不等式:2(x-6)+4≤3x-5,并将它的解集在数轴上表示出来.23.(10分)已知:如图,在四边形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.(1)求证:四边形CDEF是平行四边形;(2)填空:①当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是矩形;②当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是菱形.24.(10分)某县为发展教育事业,加强对教育经费投入,2012年投入3000万元,2014年投入3630万元,(1)求该县教育经费的年平均增长率;(2)若增长率保持不变,预计2015年该县教育经费是多少.25.(12分)计算:(1)5÷-3+2;(2)-a2+3a26.如图,点A(1,0),点B在y轴正半轴上,直线AB与直线l:y=相交于点C,直线l与x轴交于点D,AB=.(1)求点D坐标;(2)求直线AB的函数解析式;(3)求△ADC的面积.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据题意,可以证得△ACD∽△CBD,进而得到,由已知数据代入即可.【详解】由题意知,,∴∠ADC=∠BDC=90°,∠A=∠BCD,∴△ACD∽△CBD,∴,即,∵,,∴CD=4,故选:A.【点睛】本题考查了直角三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.2、D【解析】分析:根据不等式的基本性质判断,不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.详解:A、不等式两边加(或减)同一个数(或式子),不等号的方向不变,a>b两边同时减3,不等号的方向不变,所以a-3>b-3正确;B、C、不等式两边乘(或除以)同一个正数,不等号的方向不变,所以3a>3b和正确;D、不等式两边乘(或除以)同一个负数,不等号的方向改变,a>b两边同乘以-1得到-a<-b,所以-a>-b错误;故选D.点睛:不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3、D【解析】
根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.【详解】解:∵D、E分别为AB、BC的中点,
∴DE=AC=5,
同理,DF=BC=8,FE=AB=4,
∴△DEF的周长=4+5+8=17(cm),
故选D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.4、A【解析】
先根据题意证明△BOE∽△CBA,根据相似比得出BO×AB的值即为k的值,再利用BC×OE=BO×AB和面积公式即可求解.【详解】∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90∘,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.即BC×OE=BO×AB=k=6.∴,故选:A.【点睛】本题主要考查相似三角形判定定理,熟悉掌握定理是关键.5、B【解析】
根据一次函数的图像与性质,结合k=-3<0,b=2>0求解即可.【详解】∵k=-3<0,b=2>0,∴一次函数y=-3x+2的图象经过一二四象限,不经过第三象限.故选B.【点睛】题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.6、C【解析】试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C.7、C【解析】
根据乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同,列出相应的方程,本题得以解决.【详解】解:由题意可得,,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.8、A【解析】
根据三角形中位线定理可判定出顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形;平行四边形是中心对称图形,不是轴对称图形;对角线相等的平行四边形是矩形;证明两个直角三角形全等的方法不只有HL,还有SAS,AAS,ASA.【详解】A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形,说法正确;B.平行四边形是中心对称图形,不是轴对称图形,原说法错误;C.对角线相等的平行四边形是矩形,原说法错误;D.已知两个直角三角形斜边和直角边对应相等,可以用“HL”定理证明全等,原说法错误.故选A.【点睛】本题考查了中心对称图形、直角三角形全等的判定、矩形的判定、中点四边形,关键是熟练掌握各知识点.9、A【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵二次根式在实数范围内有意义,∴x−50,解得x5.故选:A.【点睛】考查二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.10、D【解析】
在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【详解】解:显然A、B、C三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D、对于x>0的部分值,y都有二个或三个值与之相对应,则y不是x的函数;故选:D.【点睛】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.11、C【解析】
根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.【详解】解:选项ABD中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;只有选项C中,x取1个值,y有2个值与其对应,故y不是x的函数.故选C.【点睛】此题主要考查了函数的定义,正确掌握函数定义是解题关键.12、B【解析】
根据二次根式有意义的条件可得,再解不等式即可.【详解】解:由题意得:,解得:,
故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.二、填空题(每题4分,共24分)13、x≥﹣2且x≠1【解析】分析:根据使分式和二次根式有意义的条件进行分析解答即可.详解:∵要使y=有意义,∴,解得:且.故答案为:且.点睛:熟记:“二次根式有意义的条件是:被开方数是非负数;分式有意义的条件是:分母的值不为0”是正确解答本题的关键.14、【解析】试题分析:两个负数比较大小,绝对值越大的数反而越小.-3=-;-2=-,根据1812可得:--.考点:二次根式的大小比较15、【解析】
运算“※”的意思是两数的倒数之和.由于是在正数范围内,所以-2可看作※后面的x的系数,根据新定义列出式子计算即可.【详解】∵,
∴,去分母得:,解得:经检验是原方程的解.故答案为.【点睛】本题除了定义运算外,还考查简单的分式方程的解法.16、1.【解析】
根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.【详解】∵菱形ABCD的顶点C(-1,0),点B(0,2),∴点A的坐标为(-1,4),点D坐标为(-2,2),∵D(n,2),∴n=-2,当y=4时,-x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,∴m+n=1,故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.17、2.【解析】
根据题意可证△ADE≌△ACD,可得AE=AC=2,CD=DE,根据勾股定理可得DE,CD的长,再根据勾股定理可得FC的长,即可求△FCD的面积.【详解】∵AD是∠BAC的平分线,DE⊥AB于E,∠C=90°∴CD=DE∵CD=DE,AD=AD∴Rt△ACD≌Rt△ADE∴AE=AC∵在Rt△ABC中,AC==2∴AE=2∴BE=AB-AE=4∵在Rt△DEB中,BD1=DE1+BE1.∴DE1+12=(8-DE)1∴DE=3即BD=5,CD=3∵BD=DF∴DF=5在Rt△DCF中,FC==4∴△FCD的面积为=×FC×CD=2故答案为2.【点睛】本题考查了全等三角形的性质和判定,角平分线的性质,勾股定理,关键是灵活运用这些性质解决问题.18、64或【解析】
根据相似三角形周长的比等于相似比,面积的比等于相似比的平方求出面积比,根据题意计算即可.【详解】解:∵两个相似三角形的周长分别为8和6,∴两个相似三角形的周长之比为4:3,∴两个相似三角形的相似比是4:3,∴两个相似三角形的面积比是16:9,又一个三角形的面积为36,设另一个的面积为S,则16:9=S:36或16:9=36:S,∴S=64或,故答案为:64或.【点睛】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.三、解答题(共78分)19、(1)甲:平均数8;乙:平均数8,中位数9;(2)甲组学生的成绩比较稳定.【解析】
(1)根据平均数和中位数的定义求解可得;(2)根据方差的定义计算出乙的方差,再比较即可得.【详解】(1)甲的平均数:,乙的平均数:,乙的中位数:9;(2).∵,∴甲组学生的成绩比较稳定.【点睛】本题考查了求平均数,中位数与方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20、(1)直线AB的解析式为y=2x+8;(2)CD=;(3)满足题意的点E坐标为(0,5+)或(0,5﹣)或(0,5)或(0,).【解析】
(1)用待定系数法求解即可;(2)先由勾股定理求出AB的长,再由垂直平分线的性质求出AC的长,然后证明△CAD∽△OAB,利用相似三角形的对应边成比例即可求出CD的长,(3)先由△CAD∽△OAB,求出AD和OD的长,然后分当CD=DE时,当CD=CE时,当CE=DE时三种情况求解即可;【详解】(1)∵A(0,8),∴设直线AB的解析式为y=kx+8,∵B(﹣4,0),∴﹣4k+8=0,∴k=2,∴直线AB的解析式为y=2x+8;(2)∵A(0,8),B(﹣4,0),∴OA=8,OB=4,AB=4,∵CD是AB的垂直平分线,∴∠ACD=90°,AC=AB=2,∵∠ACD=∠AOB=90°,∠CAD=∠OAB,∴△CAD∽△OAB,∴,∴,∴CD=,(3)∵△CAD∽△OAB,∴,∴,∴AD=5,∴OD=OA﹣AD=3,D(0,3),当CD=DE时,DE=,∴E(0,5+)或(0,5﹣),当CD=CE时,如图1,∵A(0,8),B(﹣4,0),∴C(﹣2,4),过点C作CF⊥y轴于F,∴DF=EF,F(0,4),∴E(0,5);当CE=DE时,如图2,过E作E'G⊥CD,则E'G是线段CD的中垂线,∵AB⊥CD,∴E'G是△ACD的中位线,∴DE'=AE'=AD=,∴OE'=OD+DE'=,∴E(0,),即:满足题意的点E坐标为(0,5+)或(0,5﹣)或(0,5)或(0,).【点睛】本题考查了待定系数法求一次函数解析式,勾股定理,线段垂直平分线的性质,相似三角形的判定与性质,等腰三角形的性质及分类讨论的数学思想,熟练掌握待定系数法、相似三角形的判定与性质、类讨论的数学思想是解答本题的关键.21、(1)图象详见解析,A(,),B(8,4);(2)x≤或x>8;(3).【解析】
(1)用描点法画出和的图象,再解方程组求得点A、B的坐标即可;(2)观察图象,结合点A、B的坐标即可求解;(3)先求得点C的坐标,再利用S△ABC=S△OBC﹣S△OAC即可求得△ABC的面积.【详解】(1)画出函数y1=|x﹣4|的图象如图:∵y=|x﹣4|∴,解得,∴A(,),解得,∴B(8,4);(2)y2≤y1时自变量x的取值范围是:x≤或x≥8;(3)令y=0则0=|x﹣4|,解得x=4,∴C(0,4),∴S△ABC=S△OBC﹣S△OAC=×4×4﹣=.【点睛】本题考查了函数图象的画法及函数的交点坐标问题,正确求得两个函数的交点坐标是解决问题的关键.22、(1)x=;(2)x≥-3.【解析】分析:(1)首先找出最简公分母,再去分母进而解方程得出答案;(2)首先去括号,进而解不等式得出答案.详解:(1)去分母得:x=3(x-3),解得:x=,检验:x=时,x(x-3)≠0,则x=是原方程的根;(2)2(x-6)+4≤3x-52x-12+4≤3x-5,解得:x≥-3,如图所示:.点睛:此题主要考查了解分式方程以及解不等式,正确掌握解题步骤是解题关键.23、(1)详见解析;(2)①AD=BC;②AD⊥BC.【解析】
(1)利用两组对边分别平行的四边形是平行四边形,可得四边形AECD和四边形BFDC都是平行四边形,再由一组对边平行且相等的四边形是平行四边形可得CDEF是平行四边形.(2)①当AD=BC时,四边形EFCD是矩形.理由是:对角线相等的平行四边形是矩形;②当AD⊥BC时,四边形EFCD是菱形.理由是:对角线互相垂直的平行四边形是菱形.【详解】解:(1)证明:∵AB∥CD,CE∥AD,DF∥BC,∴四边形AECD和四边形BFDC都是平行四边形,∴AE=CD=FB,∵AB=3CD,∴EF=CD,∴四边形CDEF是平行四边形.(2)解:①当AD=BC时,四边形EFCD是矩形.理由:∵四边形AECD和四边形BFDC都是平行四边形,∴EC=AD,DF=BC,∴EC=DF,∵四边形EFDC是平行四边形,∴四边形EFDC是矩形.②当AD⊥BC时,四边形EFCD是菱形.理由:∵AD∥CE,DF∥CB,AD⊥BC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年桥梁设计规划中的风险控制
- 2026年敌对环境下的建筑电气节能设计策略
- 承台深基坑施工专项方案试卷教案
- 2026年大跨度结构的设计挑战
- 科技公司员工培训计划模板
- 红酒销售年度工作计划与目标分析
- 教学课件设计思路与说明范例
- 新能源监控系统建设与维护方案
- 2026年桥梁设计与施工一体化的优化研究
- 2026年绿色施工技术的重点研究方向
- 特殊作业安全管理监护人专项培训课件
- 电梯日管控、周排查、月调度内容表格
- TCASME 1598-2024 家族办公室架构师职业技能等级
- 人教版三年级上册《生命-生态-安全》全册教案(及计划)
- 电能表修校工(高级技师)技能认证理论考试总题及答案
- 长塘水库工程环评报告书
- 人工智能在建筑和工程领域的应用培训
- 工程建设公司QC小组提高型钢混凝土柱预埋地脚螺栓一次施工合格率成果汇报书
- 供应商货款打折协议书正规范本(通用版)
- 支气管哮喘患者的自我管理宣教
- 质量效应2楷模路线文字版
评论
0/150
提交评论