2024年浙江省衢州市Q21教联盟八年级数学第二学期期末统考试题含解析_第1页
2024年浙江省衢州市Q21教联盟八年级数学第二学期期末统考试题含解析_第2页
2024年浙江省衢州市Q21教联盟八年级数学第二学期期末统考试题含解析_第3页
2024年浙江省衢州市Q21教联盟八年级数学第二学期期末统考试题含解析_第4页
2024年浙江省衢州市Q21教联盟八年级数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年浙江省衢州市Q21教联盟八年级数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,点为正方形内一点,,,连结,那么的度数是()A. B. C. D.2.△ABC的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A.∠A:∠B:∠C=3∶4∶5 B.∠A=∠B+∠CC.a2=(b+c)(b-c) D.a:b:c=1∶2∶3.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.如图,在矩形中,边的长为,点分别在上,连结,若四边形是菱形,且,则边的长为()A. B. C. D.5.不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.AB=CD,AD=BCC.AB=CD,AB∥CD D.AB=CD,AD∥BC6.在平面直角坐标系中,点M到x轴的距离是3,到y轴的距离是1,且在第二象限,则点M的坐标是()A.(3,﹣1) B.(-1,3) C.(-3,1) D.(-2,﹣3)7.环保部门根据我市一周的检测数据列出下表.这组数据的中位数是A. B. C. D.8.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形9.如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为()A.7 B.9 C.11 D.1410.化简的结果是()A.2 B.-4 C.4 D.±411.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表.关于这10户家庭的月用电量说法正确的是()月用电量(度)

25

30

40

50

60

户数

1

2

4

2

1

A.中位数是40 B.众数是4 C.平均数是20.5 D.极差是312.如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG最小值为()A. B. C. D.二、填空题(每题4分,共24分)13.已知是一元二次方程的两实根,则代数式_______.14.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”,若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程x2+3x+m=0的解为_____.15.如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过A1点作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2019的坐标为______.16.如图,已知四边形ABCD是平行四边形,将边AD绕点D逆时针旋转60°得到DE,线段DE交边BC于点F,连接BE.若∠C+∠E=150°,BE=2,CD=2,则线段BC的长为_____.17.若关于的方程有增根,则的值是___________.18.如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_____cm1.三、解答题(共78分)19.(8分)为了响应“五水共治,建设美丽永康”的号召,某小区业委会随机调查了该小区20户家庭5月份的用水量,结果如下表:5月份用水量(吨)51011131520户数356321(1)计算这20户家庭5月份的平均用水量;(2)若该小区有800户家庭,估计该小区5月份用水量多少吨?20.(8分)如图,在平行四边形ABCD中,O是AB的中点,连接DO并延长交CB的延长线于点E,连接AE、DB.(1)求证:△AOD≌△BOE;(2)若DC=DE,判断四边形AEBD的形状,并说明理由.21.(8分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD.求∠BDC的度数.22.(10分)如图,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.23.(10分)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.(1)请直接写出点A的坐标:______;(2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.①求k的值;②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.24.(10分)为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打折售票,节假日按团队人数分段定价售票,即人以下(含人)的团队按原价售票;超过人的团队,其中人仍按原价售票,超过人部分的游客打折售票.设某旅游团人数为人,非节假日购票款为(元),节假日购票款为(元).与之间的函数图象如图所示.(1)观察图象可知:;;;(2)直接写出,与之间的函数关系式;(3)某旅行社导游王娜于5月1日带团,5月20日(非节假日)带团都到该景区旅游,共付门票款1900元,,两个团队合计50人,求,两个团队各有多少人?25.(12分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸图中,点A,B都在格点处.(1)请在图中作等腰△ABC,使其底边AC=2,且点C为格点;(2)在(1)的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.26.某市为了美化环境,计划在一定的时间内完成绿化面积万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加,而且要提前年完成任务,经测算要完成新的计划,平均每年的绿化面积必须比原计划多万亩,求原计划平均每年的绿化面积.

参考答案一、选择题(每题4分,共48分)1、C【解析】

由正方形的性质得到AD=CD,根据等腰三角形的性质得到∠DAE=∠AED=70°,求得∠ADE=180°-70°-70°=40°,得到∠EDC=50°,根据等腰三角形的性质即可得到结论.【详解】解:,,,四边形是正方形,,,,,,,故选:.【点睛】本题考查了正方形的性质,等腰三角形的性质,熟练掌握正方形的性质是解题的关键.2、A【解析】分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得∠A=90°,是直角三角形,故不正确;根据平方差公式,化简原式为a2=b2-c2,即a2+c2=b2,根据勾股定理的逆定理,可知是直角三角形,故不正确;根据a、b、c的关系,可直接设a=x,b=2x,c=x,可知a2+c2=b2,可以构成直角三角形,故不正确.故选A.点睛:此题主要考查了直角三角形的判定,关键是根据三角形的两锐角互余,三角形的内角和定理和勾股定理逆定理进行判断即可.3、C【解析】

根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形4、C【解析】

根据菱形的性质得出,,,再根据矩形的性质以及全等三角形的性质得出,,继而推出答案.【详解】解:四边形为菱形,,四边形为矩形又.故选:C.【点睛】本题考查的知识点有菱形的性质、矩形的性质、全等三角形的判定及性质、含30度角的直角三角形的性质,利用已知条件推出是解此题的关键.5、D【解析】

A、B、C都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【详解】解:根据平行四边形的判定:A、B、C可判定为平行四边形,而C不具备平行四边形的条件,A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),满足;B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形),满足;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),满足;D、∵AB=CD,AD∥BC,∴四边形ABCD是等腰梯形,不一定是平行四边形,不满足;

故选:D.【点睛】本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.6、B【解析】

根据点到坐标轴的距离分别求出该点横、纵坐标的绝对值,再根据点在第二象限得出横、纵坐标的具体值即可.【详解】解:由点M到x轴的距离是3,到y轴的距离是1,得

|y|=3,|x|=1,由点M在第二象限,得x=-1,y=3,

则点M的坐标是(-1,3),

故选:B.【点睛】本题考查点到坐标轴的距离和平面直角坐标系中各象限内点的坐标特征.熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.7、C【解析】

将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【详解】根据中位数的概念,可知这组数据的中位数为:21故答案选:C【点睛】本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.8、C【解析】

此题可以利用多边形的外角和和内角和定理求解.【详解】解:设所求多边形边数为n,由题意得(n﹣2)•180°=310°×2解得n=1.则这个多边形是六边形.故选C.【点睛】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.9、B【解析】

先确定出CD=9,再利用角平分线上的点到两边的距离相等,即可得出结论.【详解】解:

∵CD:BD=3:1.

设CD=3x,则BD=1x,

∴BC=CD+BD=7x,

∵BC=21,

∴7x=21,

∴x=3,

∴CD=9,

过点D作DE⊥AB于E,

∵AD是∠BAC的平分线,∠C=90°,

∴DE=CD=9,

∴点D到AB边的距离是9,

故选B.【点睛】本题考查了角平分线的性质,线段的和差,解本题的关键是掌握角平分线的性质定理.10、C【解析】

根据算术平方根的性质直接进行计算即可.【详解】=|-1|=1.故选:C.【点睛】本题考查的是算术平方根的定义,把化为|-1|的形式是解答此题的关键.11、A【解析】试题分析:根据中位数、众数、加权平均数和极差的定义和计算公式分别对每一项进行分析,即可得出答案.A、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;D、这组数据的极差是:60﹣25=35,故本选项错误;故选A.考点:1.极差;2.加权平均数;3.中位数;4.众数.12、D【解析】

如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.证明△ADP∽△DHG,推出∠DHG=∠DAP=定值,推出点G在射线HF上运动,推出当CG⊥HE时,CG的值最小,想办法求出CG即可.【详解】如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HE时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=3,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,∴AC==5,DH=,∴CH=,∴EH=,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=,∴CG的最小值为,故选D.【点睛】本题考查旋转变换,矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形核或全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(每题4分,共24分)13、【解析】

根据韦达定理得,再代入原式求解即可.【详解】∵是一元二次方程的两实根∴∴故答案为:.【点睛】本题考查了一元二次方程根与系数的问题,掌握韦达定理是解题的关键.14、x1=﹣1,x1=﹣1.【解析】

利用题中的新定义求出m的值,代入一元二次方程,运用因式分解法解方程,即可求出解.【详解】解:由“关联数”定义得一次函数为y=x+m﹣1,又∵此一次函数为正比例函数,∴m﹣1=0,解得:m=1,∴关于x的方程为x1+3x+1=0,因式分解得:(x+1)(x+1)=0,∴x+1=0或x+1=0,∴x1=﹣1,x1=﹣1;故答案为x1=﹣1,x1=﹣1.【点睛】本题考查新定义“关联数”、一元二次方程的解法以及一次函数的定义,弄清题中的新定义是解本题的关键.15、(-21009,-21010)【解析】

根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.【详解】当x=1时,y=2,∴点A1的坐标为(1,2);当y=-x=2时,x=-2,∴点A2的坐标为(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).∵2019=504×4+3,∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).故答案为(-21009,-21010).【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.16、2【解析】

过C作CM⊥DE于M,过E作EN⊥BC于N,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠BFE=∠DFC=∠ADE,根据旋转的性质得到∠BFE=∠DFC=∠ADE=60°,推出∠DCM=∠EBN,根据相似三角形的性质得到CM=BN,DM=EN,得到FM=BN,设FM=BN=x,EN=y,则DM=y,CM=x,根据勾股定理即可得到结论.【详解】解:过C作CM⊥DE于M,过E作EN⊥BC于N,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BFE=∠DFC=∠ADE,∵将边AD绕点D逆时针旋转60°得到DE,∴∠BFE=∠DFC=∠ADE=60°,∴∠FCM=∠FBN=30°,∵∠DCF+∠BEF=150°,∴∠DCM+∠BEN=90°,∵∠BEN+∠EBN=90°,∴∠DCM=∠EBN,∴△DCM∽△EBN,∴==,∴CM=BN,DM=EN,在Rt△CMF中,CM=FM,∴FM=BN,设FM=BN=x,EN=y,则DM=y,CM=x,∴CF=2x,EF=y,∵BC=AD=DE,∴y+x+y=2x+y+x,∴x=y,∵x2+y2=4,∴y=,x=,∴BC=2,故答案为:2.【点评】本题考查了平行四边形的性质,相似三角形的判定和性质,勾股定理,旋转的性质,正确的作出辅助线是解题的关键.17、1【解析】解:方程两边都乘(x﹣2),得:x﹣1=m.∵方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=1.故答案为:1.点睛:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18、2【解析】

根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【详解】解:∵DE是△ABC的中位线,∴DE∥BC,BC=1DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=BC×AF=×10×8=2cm1.故答案为2.【点睛】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.三、解答题(共78分)19、(1)11吨;(2)8800吨.【解析】

根据统计表信息:这20户家庭5月份的平均用水量为;根据(1)估计该小区5月份用水量为.【详解】解:这20户家庭5月份的平均用水量为(吨);估计该小区5月份用水量为吨.【点睛】本题考核知识点:平均数,用样本估计总体.解题关键点:熟记平均数公式.20、(1)证明见解析;(2)四边形AEBD是矩形.【解析】

(1)利用平行线得到∠ADO=∠BEO,再利用对顶角相等和线段中点,可证明△AOD≌△BOE;(2)先证明四边形AEBD是平行四边形,再利用对角线相等的平行四边形的矩形,可判定四边形AEBD是矩形.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥CE,∴∠ADO=∠BEO.∵O是BC中点,∴AO=BO.又∵∠AOD=∠BOE,∴△AOD≌△BOE(AAS);(2)四边形AEBD是矩形,理由如下:∵△AOD≌△BOE,∴DO=EO.又AO=BO,∴四边形AEBD是平行四边形.∵DC=DE=AB,∴四边形AEBD是矩形.【点睛】本题考查了平行四边形的性质、全等三角形的判定和性质、矩形的判定和性质,解决这类问题往往是把四边形问题转化为三角形问题解决.21、(1)证明见解析;(2)90°.【解析】试题分析:(1)、根据旋转图形的性质可得:CD=CE,∠DCE=90°,根据∠ACB=90°得出∠BCD=90°-∠ACD=∠FCE,结合已知条件得出三角形全等;(2)、根据全等得出∠BDC=∠E,∠BCD=∠FCE,从而得出∠DCE=90°,然后根据EF∥CD得出∠BDC=90°.试题解析:(1)、∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE,在△BCD和△FCE中,CB=CF∵BCD=∠FCE,CD=CE,CB=CF,∠BCD=∠FCE∴△BCD≌△FCE(SAS).(2)、由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°-∠DCE=90°,∴∠BDC=90°.考点:(1)、旋转图形的性质;(2)、三角形全等的证明与性质.22、证明见解析.【解析】

根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可.【详解】解:∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠CBM+∠ABF=90°,∵CE⊥BF,∴∠ECB+∠MBC=90°,∴∠ECB=∠ABF,在△ABF和△BCE中,∴△ABF≌△BCE(ASA),∴BE=AF.考点:全等三角形的判定与性质;正方形的性质.23、(1)(0,1);(2)①k=;②N(-3,);③直线

l2的解析式为y=x+1.【解析】

(1)令,求出相应的y值,即可得到A的坐标;(2)①先设出P的坐标,然后通过点的平移规律得出平移后的坐标,然后将代入中即可求出k的值;②作AB的中垂线与y轴交于M点,连结BM,分别作AM,BM的平行线,相交于点N,则四边形AMBN是菱形,设M(0,t),然后利用勾股定理求出t的值,从而求出OM的长度,然后利用BN=AM求出BN的长度,即可得到N的坐标;③先根据题意画出图形,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D,利用等腰三角形的性质和AAS证明△AOB≌△BDC,得出AO=BD,OB=DC,进一步求出点C的坐标,然后利用待定系数法即可求出直线l2的解析式.【详解】(1)∵y=kx+1与y轴交于点A,令,,∴A(0,1).(2)①由题意得:P(m,km+1),∵将点P向左平移3个单位,再向下平移1个单位,得点P′,∴P′(m-3,km),∵P′(m-3,km)在射线AB上,∴k(m-3)+1=km,解得:k=.②如图,作AB的中垂线与y轴交于M点,连结BM,过点B作AM的平行线,过点A作BM的平行线,两平行线相交于点N,则四边形AMBN是菱形.,,当时,,解得,∴.设M(0,t),则AM=BM=1-t,在Rt△BOM中,OB2+OM2=BM2,即32+t2=(1-t)2,解得:t=,∴M(0,),∴OM=,BN=AM=1-=,∴N(-3,).③如图,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D.则∠ABC=∠BDC=90°,∵∠BAC=15°,∴△ABC是等腰直角三角形,∴AB=BC,∠ABO+∠CBD=90°,又∵∠ABO+∠BAO=90°,∴∠BAO=∠CBD,在和中,∴△AOB≌△BDC(AAS),∴AO=BD=1,OB=DC=3,∴OD=OB+BD=3+1=7,∴C(-7,3),设直线l2的解析式为:y=ax+1,则-7a+1=3,解得:a=.∴直线l2的解析式为:y=x+1.【点睛】本题主要考查全等三角形的判定及性质,菱形的性质,勾股定理,一次函数与几何综合,解题的关键在于合理的添加辅助线,构造出全等三角形.24、(1),,;(2),;(3)团有40人,团有10人【解析】

(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值,由图可求m的值;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论