版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省潍坊联考八年级数学第二学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系xOy中,点P(,5)关于y轴的对称点的坐标为()A.(,) B.(1,5) C.(1.) D.(5,)2.若关于的一元二次方程的一个根是0,则的值是()A.1 B.-1 C.1或-1 D.3.定义新运算“”如下:当时,;当时,,若,则的取值范围是()A.或 B.或C.或 D.或4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,下列条件中,不能使四边形DBCE成为菱形的是()A.AB=BE B.BE⊥DC C.∠ABE=90° D.BE平分∠DBC5.如图,在菱形中,是菱形的高,若对角线、的长分别是6、8,则的长是A. B. C. D.56.如图,在方格中有两个涂有阴影的图形M、N,每个小正方形的边长都是1个单位长度,图(1)中的图形M平移后位置如图(2)所示,以下对图形M的平移方法叙述正确的是()A.先向右平移2个单位长度,再向下平移3个单位长度B.先向右平移1个单位长度,再向下平移3个单位长度C.先向右平移1个单位长度,再向下平移4个单位长度D.先向右平移2个单位长度,再向下平移4个单位长度7.下列各组数中不能作为直角三角形三边长的是()A.7,9,12 B.5,12,13 C.1,, D.3,4,58.如图,在矩形ABCD中,AD=+8,点E在边AD上,连BE,BD平分∠EBC,则线段AE的长是()A.2 B.3 C.4 D.59.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.910.不等式组的解集是()A.x>-2 B.x<1C.-1<x<2 D.-2<x<1二、填空题(每小题3分,共24分)11.若关于x的方程的解是负数,则a的取值范围是_____________。12.小明在计算内角和时,不小心漏掉了一个内角,其和为1160,则漏掉的那个内角的度数是_____________.13.若一元二次方程有两个不相同的实数根,则实数的取值范围________.14.已知中,,角平分线BE、CF交于点O,则______.15.已知,,则的值为___________.16.下面是某校八年级(1)班一组女生的体重(单位:kg)36354542334042,这组数据的平均数是____,众数是_____,中位数是_____.17.将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为______________.18.已知直角三角形的两条边为5和12,则第三条边长为__________.三、解答题(共66分)19.(10分)如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.(1)当时,判断的形状,并说明理由;(2)求的度数;(3)请你探究:当为多少度时,是等腰三角形?20.(6分)(1)已知一个正分数(m>n>0),将分子、分母同时增加1,得到另一个正分数,比较和的值的大小,并证明你的结论;(2)若正分数(m>n>0)中分子和分母同时增加k(整数k>0),则_____.(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好.若原来的地板面积和窗户面积分别为x,y,同时增加相等的窗户面积和地板面积,则住宅的采光条件是变好还是变坏?请说明理由.21.(6分)在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;(2)当B′在对角线AC上时,如图②所示,求BE的长.22.(8分)已知,如图,在平面直角坐标系xoy中,直线l1:y=x+3分别交x轴、y轴于点A、B两点,直线l2:y=-3x过原点且与直线l1相交于C,点(1)求点C的坐标;(2)求出ΔBCO的面积;(3)当PA+PC的值最小时,求此时点P的坐标;23.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.24.(8分)如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE=3,求BC的长.25.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(−4,5),(−1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△DEF,其中点A对应点D,点B对应点E,点C对应点F;(3)写出点E关于原点的对称点M的坐标.26.(10分)在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)根据已知条件画出图形;(2)求证:四边形AFCE是平行四边形.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据关于纵轴的对称点:纵坐标相同,横坐标变成相反数,∴点P关于y轴的对称点的坐标是(1,5),故选B2、B【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可【详解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以
,所以,故故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.3、D【解析】
分3>x+2和3<x+2两种情况,根据新定义列出不等式求解可得.【详解】当3>x+2,即x<1时,3(x+2)+x+2>0,
解得:x>-2,
∴-2<x<1;
当3<x+2,即x>1时,3(x+2)-(x+2)>0,
解得:x>-2,
∴x>1,
综上,-2<x<1或x>1,
故选:D.【点睛】考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.4、A【解析】
根据菱形的判定方法一一判断即可;【详解】解:∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;
B、∵BE⊥DC,∴对角线互相垂直的平行四边形为菱形,故本选项正确;
C、∵∠ABE=90°,∴BD=DE,∴邻边相等的平行四边形为菱形,故本选项正确;
D、∵BE平分∠DBC,∴对角线平分对角的平行四边形为菱形,故本选项正确.
故选A.【点睛】本题考查了平行四边形的判定以及菱形的判定,正确掌握菱形的判定与性质是解题关键.5、B【解析】
由菱形的性质可得AC⊥BD,BO=DO=4,CO=AO=3,由勾股定理可求CB=5,由菱形的面积公式可求AE的长.【详解】解:四边形是菱形,,故选:.【点睛】本题菱形的性质,熟练运用菱形的面积公式是本题的关键.6、B【解析】
根据平移前后图形M中某一个对应顶点的位置变化情况进行判断即可.【详解】由图(1)可知,图M先向右平移1个单位长度,再向下平移3个单位长度,可得题图(2),故选B【点睛】本题主要考查了图形的平移,平移由平移方向和平移距离决定,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.7、A【解析】
根据勾股定理逆定理即可求解.【详解】∵72+92≠122,所以A组不能作为直角三角形三边长故选A.【点睛】此题主要考查勾股定理,解题的关键是熟知勾股定理的逆定理进行判断.8、B【解析】
根据二次根式的性质得到AB,AD的长,再根据BD平分∠EBC与矩形的性质得到∠EBD=∠ADB,故BE=DE,再利用勾股定理进行求解.【详解】解:∵AD=+8,∴AB=4,AD=8∵BD平分∠EBC∴∠EBD=∠DBC∵AD∥BC∴∠ADB=∠DBC∴∠EBD=∠ADB∴BE=DE在Rt△ABE中,BE2=AE2+AB2,∴(8﹣AE)2=AE2+16∴AE=3故选:B.【点睛】此题主要考查矩形的线段求解,解题的关键是熟知勾股定理的应用.9、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.10、D【解析】分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.详解:,解①得:x>﹣2,解②得:x<1,则不等式组的解集是:﹣2<x<1.故选D.点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.二、填空题(每小题3分,共24分)11、【解析】
:把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:【详解】解:∵∴∵关于x的方程的解是负数∴∴解得【点睛】本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.12、100°【解析】
根据n边形的内角和是(n-2)•180°,少计算了一个内角,结果得1160,可以解方程(n-2)•180°≥1160,由于每一个内角应大于0°而小于180度,则多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【详解】解:设多边形的边数是n.
依题意有(n-2)•180°≥1160°,解得:则多边形的边数n=9;
九边形的内角和是(9-2)•180=1260度;
则未计算的内角的大小为1260-1160°=100°.
故答案为:100°【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.13、且【解析】
利用一元二次方程的定义和判别式的意义得到m≠1且△=(-2)2-4m>1,然后求出两不等式的公共部分即可.【详解】解:根据题意得m≠1且△=(-2)2-4m>1,
解得m<1且m≠1.故答案为:m<1且m≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.14、【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.15、1【解析】
将写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵,,∴,故答案为:1.【点睛】本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.16、【解析】
分别利用平均数、众数及中位数的定义求解后即可得出答案.【详解】解:将数据重新排列为33、35、36、40、42、42、45,所以这组数据的平均数为,众数为、中位数为,故答案为:、、.【点睛】此题考查了平均数、众数和中位数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以总个数.17、(-2,2)【解析】
由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.【详解】解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,∴A′的坐标为(-2,2).故答案为:(-2,2).【点睛】本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18、1或【解析】
因为不确定哪一条边是斜边,故需要讨论:①当12为斜边时,②当12是直角边时,根据勾股定理,已知直角三角形的两条边就可以求出第三边.【详解】解:①当12为斜边时,则第三边==;
②当12是直角边时,第三边==1.
故答案为:1或.【点睛】本题考查了勾股定理的知识,难度一般,但本题容易漏解,在不确定斜边的时候,一定不要忘记讨论哪条边是斜边.三、解答题(共66分)19、(1)为直角三角形,理由见解析;(2);(3)当为或或时,为等腰三角形.【解析】
(1)由旋转可以得出和均为等边三角形
,再根据求出,进而可得为直角三角形;(2)因为进而求得,根据,即可求出求的度数;(3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.【详解】解:(1)为直角三角形,理由如下:绕顺时针旋转得到,和均为等边三角形,,,,,为直角三角形;(2)由(1)知:,,,,;(3)∵∠AOB=110°,∠BOC=α∴∠AOC=250°-a.∵△OCD是等边三角形,∴∠DOC=∠ODC=60°,∴∠ADO=a-60°,∠AOD=190°-a,当∠DAO=∠DOA时,2(190°-a)+a-60°=180°,解得:a=140°当∠AOD=ADO时,190°-a=a-60°,解得:a=125°,当∠OAD=∠ODA时,190°-a+2(a-60°)=180°,解得:a=110°∴α=110°,α=140°,α=125°.【点睛】本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.20、(1)>,证明见解析;(2)>;(3)住宅的采光条件变好了【解析】
(1)利用作差法求得,再判断结果与1的大小即可得;(2)将以上所得结论中的1换作k,即可得出结论;(3)设增加面积为a,由(2)的结论知,据此可得答案.【详解】(1)>(m>n>1).证明:∵-==,又∵m>n>1,∴>1.∴>(2)根据(1)的方法,将1换为k,有>(m>n>1,k>1).故答案为>.(3)设增加面积为a,由(2)的结论,可得.所以住宅的采光条件变好了.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及作差法比较大小的方法.21、(1)详见解析;(2)3【解析】
(1)由折叠可得BE=B'E,BC=B'C,∠BCE=∠B'CE,由∠DCB=90°=∠B可证四边形BCB′E是正方形(2)由折叠可得BC=B'C=6,则可求AB'=4,根据勾股定理可求B'E的长,即可得BE的长.【详解】(1)证明:∵△BCE沿CE折叠,∴BE=B'E,BC=B'C∠BCE=∠B'CE∵四边形ABCD是矩形∴∠DCB=90°=∠B∴∠BCE=45°且∠B=90°∴∠BEC=∠BCE=45°∴BC=BE∵BE=B'E,BC=B'C∴BC=BE=B'C=B'E∴四边形BCB'E是菱形又∵∠B=90°∴四边形BCB'E是正方形(2)∵AB=8,BC=6∴根据勾股定理得:AC=10∵△BCE沿CE折叠∴B'C=BC=6,BE=B'E∴AB'=4,AE=AB﹣BE=8﹣B'E在Rt△AB'E中,AE2=B'A2+B'E2∴(8﹣B'E)2=16+B'E2解得:BE'=3∴BE=B'E=3【点睛】本题考查了折叠问题,正方形的判定,矩形的性质,勾股定理,根据勾股定理列出方程是本题的关键.22、(1)点C-34,94;(2)【解析】
(1)联立两直线解析式组成方程组,解得即可得出结论;(2)将x=0代入y=x+3,求出OB的长,再利用(1)中的结论点C-34(3)先确定出点A关于y轴的对称点A',即可求出PA+PC的最小值,再用待定系数法求出直线A'C的解析式即可得出点P坐标.【详解】解:(1)∵直线l1:y=x+3与直线l2:y=-3x相交于C,∴y=x+3解得:x=-∴点C-(2)∵把x=0代入y=x+3,解得:y=3,∴OB=3,又∵点C-∴S==9(3)如图,作点A(-3,0)关于y轴的对称点A'(3,0),连接CA'交y轴于点P,此时,PC+PA最小,最小值为CA'=CA由(1)知,C-∵A'(3,0),∴直线A'C的解析式为y=-3∴点P0,【点睛】此题是一次函数综合题,主要考查了函数图象的交点坐标的求法,极值的确定,用分类讨论的思想和方程(组)解决问题是解本题的关键.23、(1)详见解析;(2)1【解析】
(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【详解】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中数学课堂教学中数字化评价方法对学业成长的实践分析教学研究课题报告
- 2025年吊顶施工保密协议
- 云计算与边缘计算在人工智能教育平台架构优化中的应用与挑战教学研究课题报告
- 2026年安徽泾县公开引进事业单位急需紧缺专业人才备考题库及一套答案详解
- 《高中生物实验探究教师教学画像与教学风格演变趋势探讨》教学研究课题报告
- 2026年怒江州检验检测院引进急需紧缺专业人才备考题库及完整答案详解1套
- 晋江市磁灶镇尚志中心幼儿园2026年春季教师招聘备考题库附答案详解
- 2026年重庆水轮机厂有限责任公司招聘19人备考题库及完整答案详解1套
- 2026年石家庄幼儿师范高等专科学校单招职业技能笔试备考试题及答案解析
- 中国煤炭地质总局2026年度应届生招聘468人备考题库及参考答案详解
- DB35T 2169-2024仲裁庭数字化建设规范
- T-HAAI 003-2024 数据资产 数据质量评价规范
- DB31∕T 310001-2020 船舶水污染物内河接收设施配置规范
- GB/T 44968-2024粮食储藏小麦粉安全储藏技术规范
- UL347a标准中文版-2019中压电力转换设备UL标准中文版
- 【MOOC】线性代数-同济大学 中国大学慕课MOOC答案
- 乡村道路片石挡土墙施工合同
- 城市轨道交通列车自动控制系统维护 课件 3.1 ZC系统认知
- 2024年天津市南开区翔宇学校四上数学期末检测模拟试题含解析
- 《妇科护理》课件-第二章 妇科常用的特殊检查及护理配合
- 大学《中国古代文学史》期末复习题库
评论
0/150
提交评论