




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年河北省唐山市龙华中学八年级数学第二学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.人文书店三月份销售某畅销书100册,五月份销售量达196册,设月平均增长率为x,则可列方程(
)A.100(1+x)=196 B.100(1+2x)=196C.100(1+x2)=196 D.100(1+x)2=1962.一次函数y=kx-k(k<0)的图象大致是()A. B. C. D.3.已知是完全平方式,则的值为()A.2 B.4 C. D.4.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形5.如图,中,,,,AD是的平分线,则AD的长为A.5 B.4 C.3 D.26.在2008年的一次抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中10人的捐款分别是:5万,8万,10万,10万,10万,20万,20万,30万,50万,100万.这组数据的众数和中位数分别是()A.10万,15万 B.10万,20万 C.20万,15万 D.20万,10万7.下列式子是分式的是()A. B. C.x2y D.8.如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处,当为直角三角形时,的长为()A.3 B. C.2或3 D.3或9.若一个正多边形的一个内角是135°,则这个正多边形的边数是()A.10 B.9 C.8 D.610.一个装有进水管和出水管的空容器,从某时刻开始内只进水不出水,容器内存水,在随后的内既进水又出水,容器内存水,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量(单位:)与时间(单位:)之间的函数关系的图象大致的是()A. B.C. D.11.如图,已知四边形ABCD为菱形,AD=5cm,BD=6cm,则此菱形的面积为()A.12cm2 B.24cm2 C.48cm2 D.96cm212.如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A.四边形 B.六边形 C.八边形 D.十边形二、填空题(每题4分,共24分)13.如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF,若CF=,则BE=_________。14.将矩形ABCD折叠,使得对角线的两个端点A.C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为______.15.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.16.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.17.已知直角三角形的两直角边、满足,则斜边上中线的长为______.18.因式分解的结果是____.三、解答题(共78分)19.(8分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:游泳次数101520…x方式一的总费用(元)150175______…______方式二的总费用(元)90135______…______(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.20.(8分)先化简,再求值:()(x2-4),其中x=.21.(8分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.(3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.22.(10分)今年水果大丰收,A,B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.23.(10分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,求证:∠AEF=90°.24.(10分)阅读材料:关于的方程:的解为:,(可变形为)的解为:,的解为:,的解为:,…………根据以上材料解答下列问题:(1)①方程的解为.②方程的解为.(2)解关于方程:①()②()25.(12分)先化简再求值:()÷,其中x=11﹣.26.定义:有三个角相等的四边形叫做三等角四边形.(1)在三等角四边形中,,则的取值范围为________.(2)如图①,折叠平行四边形,使得顶点、分别落在边、上的点、处,折痕为、.求证:四边形为三等角四边形;(3)如图②,三等角四边形中,,若,,,则的长度为多少?
参考答案一、选择题(每题4分,共48分)1、D【解析】
设月平均增长率为x,分别表示出四、五月份的销售量,根据五月份的销售量列式即可.【详解】解:设月平均增长率为x,则四月份销售量为100(1+x),五月份的销售量为:100(1+x)2=196.故答案为:D【点睛】本题考查了列一元二次方程,理清题中等量关系是列方程的关键.2、A【解析】试题分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选A.考点:一次函数的图象.3、C【解析】
根据完全平方公式的形式,可得答案.【详解】解:已知=x²+4mx+4²是完全平方式,
∴4m=±8m=2或m=-2,
故选:C.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.4、A【解析】
根据对角线互相平分的四边形是平行四边形即可得出结论.【详解】解:∵O是AC、BD的中点,
∴OA=OC,OB=OD,
∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);
故选:A.【点睛】本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.5、C【解析】
先根据等腰三角形的性质:底边上的三线合一,得出AD⊥BC,BD=BC,再由勾股定理求出AD的长.【详解】∵在△ABC中,AB=AC,AD是∠BAC的平分线,
∴AD⊥BC,BD=BC.
∵BC=8,∴BD=4在RtABD中AD==3
故选C.【点睛】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6、A【解析】
根据众数、中位数的定义进行判断即可【详解】解:10万出现次数最多为3次,10万为众数;
从小到大排列的第5,6两个数分别为10万,20万,其平均值即中位数为15万.
故选:A.【点睛】本题考查数据的众数与中位数的判断,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个,解题时要细心.7、B【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:,x2y,均为整式,是分式,故选:B【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.8、D【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示。连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A.B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5−3=2,设BE=x,则EB′=x,CE=4−x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4−x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示。此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故选:D.【点睛】此题主要考查矩形的折叠问题,解题的关键是根据题意分情况讨论.9、C【解析】
根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数==1,∴这个正多边形的边数是1.故选:C.【点睛】本题主要考查正多边形内角与外角度数,掌握多边形的外角之和为360°,是解题的关键.10、A【解析】
根据只进水不出水、既进水又出水、只出水不进水这三个时间段逐一进行分析即可确定答案.【详解】∵从某时刻开始内只进水不出水,容器内存水;∴此时容器内的水量随时间的增加而增加,∵随后的内既进水又出水,容器内存水,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选A.【点睛】本题考查了函数的图象,弄清题意,正确进行分析是解题的关键.11、B【解析】
设AC交BD于O.根据勾股定理求出OA,再根据菱形的面积公式计算即可.【详解】设AC交BD于O.∵四边形ABCD是菱形,∴AC⊥BD,∵AD=5cm,OD=OB=12BD=3cm∴OA=52-∴AC=2OA=8,∴S菱形ABCD=12×AC×BD=24故选B.【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12、C【解析】设这个多边形是n边形,根据题意得:(n–2)•110°=3×360°,解得:n=1.故选C.二、填空题(每题4分,共24分)13、1或2【解析】
当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。可证△FDH≌△EDB,再证△CHM≌△DHM,推出MH⊥CD,由勾股定理可得FM,由中位线可得MH,进而可计算FH,由全等可得FH=BE。同理可求DF在CD左侧时,FH的值,进而求BE的值。【详解】如图当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。易证△BDH是等边三角形,DH=BD,∠FDH=∠EDB,DF=DE∴△FDH≌△EDB∴FH=BE,∠FHD=∠B=60°在等边△BDH中∠DHB=60°∴∠CHF=60°∴MH=MH,∠CHM=∠MHD=60°,DH=CH,∴△CHM≌△DHM∴CM=DM,∵CM=DM,CH=BH∴MH//BD,∵CD⊥AB∴MH⊥CD∴∠CMF=90°∴∴∴BE==1同理可证,当DF在CD左侧时BE==2综上所诉,BE=1或2【点睛】灵活构造三角形全等,及中位线,勾股定理,等边三角形的性质是解题的关键。14、或2【解析】
分类讨论:当点E在线段AB上,连结CE,根据折叠的性质得到AE=CE=3,然后在Rt△BCE中,利用勾股定理计算BC;当点E在线段AB的延长线上,连结CE,根据折叠的性质得AE=CE=5,在Rt△BCE中,根据勾股定理计算BC.【详解】当点E在线段AB上,如图1,连结CE,∵AB=4,BE=1,∴AE=3,∵将矩形ABCD折叠,使得对角线的两个端点A.C重合,∴AE=CE=3,在Rt△BCE中,BC=;当点E在线段AB的延长线上,如图2,连结CE,∵AB=4,BE=1,∴AE=5,∵将矩形ABCD折叠,使得对角线的两个端点A.C重合,∴AE=CE=5,在Rt△BCE中,BC=,∴BC的长为或.【点睛】本题考查折叠问题,分情况解答是解题关键.15、【解析】
先根据得出,再求出的度数,由即可得出结论.【详解】,,,,,.故答案为:.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.16、1【解析】
根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.【详解】∵DE为△ABC的中位线,∴DE=BC=×8=4,∵∠AFB=90°,D是AB的中点,∴DF=AB=×6=3,∴EF=DE-DF=1,故答案为:1.【点睛】本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.17、5【解析】
根据非负数的性质得到两直角边的长,已知直角三角形的两直角边根据勾股定理计算斜边,根据斜边上的中线等于斜边的一半计算斜边中长线。【详解】∴a-6=0,b-8=0∴a=6,b=8∴∴斜边上中线的长为5故答案为:5【点睛】本题考查了直角三角形中勾股定理,斜边上的中线等于斜边的一半的性质,本题中正确运用非负数的性质是解题关键。18、【解析】
先提取公因式6x2即可.【详解】=.故答案为:.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.三、解答题(共78分)19、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式【解析】分析:(Ⅰ)根据题意得两种付费方式,进行填表即可;(Ⅱ)根据(1)知两种方式的关系,列出方程求解即可;(Ⅲ)当时,作差比较即可得解.详解:(Ⅰ)200,,180,.(Ⅱ)方式一:,解得.方式二:,解得.∵,∴小明选择方式一游泳次数比较多.(Ⅲ)设方式一与方式二的总费用的差为元.则,即.当时,即,得.∴当时,小明选择这两种方式一样合算.∵,∴随的增大而减小.∴当时,有,小明选择方式二更合算;当时,有,小明选择方式一更合算.点睛:本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.20、【解析】
原式利用分式的运算法则进行化简,然后将x的值带入计算即可.【详解】解:===当x=时,原式=【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解题关键.21、(1)m=﹣1,n=3;(2)x<1;(3)四边形PAOB的面积为:3.1.【解析】
(1)直接把已知点代入函数关系式进而得出m,n的值;(2)直接利用函数图形得出不等式mx+n>x+n﹣2的解集;(3)分别得出AO,BO的长,进而得出四边形PAOB的面积.【详解】(1)把P(1,2)代入y=x+n﹣2得:1+n﹣2=2,解得:n=3;把P(1,2)代入y=mx+3得:m+3=2,解得m=﹣1;(2)不等式mx+n>x+n﹣2的解集为:x<1;(3)当x=0时,y=x+1=1,故OA=1,当y=0时,y=﹣x+3,解得:x=3,则OB=3,四边形PAOB的面积为:(1+2)×1+×2×(3﹣1)=3.1.【点睛】此题主要考查了一次函数与一元一次不等式以及四边形的面积,正确利用函数图象分析是解题关键.22、(1)W=35x+11200,x的取值范围是80≤x≤380;(2)从A基地运往甲销售点的水果200件,运往乙销售点的水果180件,从B基地运往甲销售点的水果200件,运往乙销售点的水果120件.【解析】试题分析:(1)用x表示出从A基地运往乙销售点的水果件数,从B基地运往甲、乙两个销售点的水果件数,然后根据运费=单价×数量列式整理即可得解,再根据运输水果的数量不小于0列出不等式求解得到x的取值范围;(2)根据一次函数的增减性确定出运费最低时的运输方案,然后求解即可.试题解析:(1)依题意,列表得
A(380)
B(320)
甲(400)
x
400-x
乙(300)
380-x
320-(400-x)=x-80
∴W=40x+20×(380-x)+15×(400-x)+30×(x-80)=35x+11200又x-80≥0400-x≥0(2)依题意得35x+12200≤18300x≥200解得200≤x≤202因w=35x+10,k=35,w随x的增大而增大,所以x=200时,运费w最低,最低运费为81200元。此时运输方案如下:
A
B
甲
200
200
乙
180
120
考点:1、一次函数的应用;2、一元一次不等式组的应用.23、证明见解析.【解析】试题分析:利用正方形的性质得出AB=BC=CD=DA,∠B=∠C=∠D=90°,设出边长为a,进一步利用勾股定理求得AE、EF、AF的长,再利用勾股定理逆定理判定即可.试题解析:证明:∵ABCD为正方形,∴AB=BC=CD=DA,∠B=∠C=∠D=90°.设AB=BC=CD=DA=a.∵E是BC的中点,且CF=CD,∴BE=EC=a,CF=a.在Rt△ABE中,由勾股定理可得:AE1=AB1+BE1=a1,同理可得:EF1=EC1+FC1=a1,AF1=AD1+DF1=a1.∵AE1+EF1=AF1,∴△AEF为直角三角形,∴∠AEF=90°.点睛:本题考查了正方形的性质,勾股定理、勾股定理逆定理的运用,注意在正方形中的直角三角形的应用.24、(1)①,;②,;(2)①,;②,.【解析】试题分析:(1)①令第一个方程中的a=2即可得到答案;②把(x-1)看成一个整体,利用第一个方程的规律即可得出答案;(2)①等式两边减去1,把(x-1)和(a-1)分别看成是整体,利用第三个方程的规律即可得出答案;②等式两边减去2,把(x-2)和(a-2)分别看成是整体,利用第二个方程和第四个方程的规律即可得出答案.试题解析:解:(1)①由第一个方程规律可得:x1=2,x2=;②根据第一个方程规律可得:x-1=3或x-1=,∴x1=4,x2=;(2)①方程两边减1得:(x-1)+=(a-1)+,∴x-1=a-1或x-1=,∴:x1=a,x2=;②方程两边减2得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古呼和浩特实验中学2024-2025学年下学期初三数学试题第一次月考考试试卷含解析
- 四川航天职业技术学院《历史影视剧鉴赏》2023-2024学年第一学期期末试卷
- 攀枝花学院《素描2》2023-2024学年第一学期期末试卷
- 商洛学院《非营利组织管理》2023-2024学年第二学期期末试卷
- 2025年图书馆学与信息学考试卷及答案
- 2025年市场研究与分析专业考研试题及答案
- 2025年中医执业医师考试试卷及答案
- 山西省吕梁地区离石区2024-2025学年三下数学期末监测试题含解析
- 上海视觉艺术学院《临床药学》2023-2024学年第二学期期末试卷
- 微信小程序电商运营培训及用户体验优化协议
- 2025-2030全球及中国电动和混合动力汽车动力传动系统行业市场现状供需分析及投资评估规划分析研究报告
- 科学控糖与健康体重管理
- 柑橘采后处理技术优化-全面剖析
- 浙江省镇海市镇海中学2025届高考考前提分英语仿真卷含答案
- 2025年广东省高三高考模拟测试二生物试卷(有答案)
- 2024年银行从业资格考试(中级)《风险管理》试题及答案指导
- 法律职业资格(主观题)题库附答案2025
- 2025年共青团团课考试题库及答案
- T-CECS120-2021套接紧定式钢导管施工及验收规程
- 人工智能导论智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 公司绿植管理制度
评论
0/150
提交评论