




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年河南省开封市田家炳实验中学数学八年级下册期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.平南县某小区5月份随机抽取了15户家庭,对其用电情况进行了统计,统计情况如下(单位:度):78,62,95,108,87,103,99,74,87,105,88,76,76,94,79.则用电量在71~80的家庭有()A.4户 B.5户 C.6户 D.7户2.在ABCD中,AB=3cm,BC=4cm,则ABCD的周长是()A.5cm B.7cm C.12cm D.14cm3.下列语句:①每一个外角都等于60∘A.1 B.2 C.3 D.44.如图,△ABC中,D、E分别是AB、AC边的中点,延长DE至F,使EF=DF,若BC=8,则DF的长为()A.6 B.8 C.4 D.5.生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n个三角形的面积为()A. B. C. D.6.八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示甲乙丙丁平均数85939386方差333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.甲 B.乙 C.丙 D.丁7.下列说法正确的是()A.对角线互相垂直的四边形是菱形 B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形 D.对角线相等的菱形是正方形8.下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率.其中适合用抽样调查的个数有()A.1个 B.2个 C.3个 D.4个9.不等式x≥2的解集在数轴上表示为()A. B.C. D.10.用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是()A.(1)(2)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3)二、填空题(每小题3分,共24分)11.若最简二次根式与可以合并,则a=____.12.观察下列各式:32=4+5,52=12+13,72=24+25,92=40+41…根据发现的规律得到132=____+____.13.如图,二次函数的图象过点A(3,0),对称轴为直线,给出以下结论:①;②;③;④若M(-3,)、N(6,)为函数图象上的两点,则,其中正确的是____________.(只要填序号)14.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是___.15.函数:y=1x+116.当时,__.17.写出一个二次项系数为1,解为1与﹣3的一元二次方程:____________.18.在中,,,点在上,.若点是边上异于点的另一个点,且,则的值为______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系内,顶点的坐标分别为,、.(1)平移,使点移到点,画出平移后的,并写出点的坐标.(2)将绕点旋转,得到,画出旋转后的,并写出点的坐标.(3)求(2)中的点旋转到点时,点经过的路径长(结果保留).20.(6分)如图,在矩形中;点为坐标原点,点,点、在坐标轴上,点在边上,直线交轴于点.对于坐标平面内的直线,先将该直线向右平移个单位长度,再向下平移个单位长度,这种直线运动称为直线的斜平移.现将直线经过次斜平移,得到直线.(备用图)(1)求直线与两坐标轴围成的面积;(2)求直线与的交点坐标;(3)在第一象限内,在直线上是否存在一点,使得是等腰直角三角形?若存在,请直接写出点的坐标,若不存在,请说明理由.21.(6分)己知:如图1,⊙O的半径为2,BC是⊙O的弦,点A是⊙O上的一动点.图1图2(1)当△ABC的面积最大时,请用尺规作图确定点A位置(尺规作图只保留作图痕迹,不需要写作法);(2)如图2,在满足(1)条件下,连接AO并延长交⊙O于点D,连接BD并延长交AC的延长线于点E,若∠BAC=45°,求AC2+CE2的值.22.(8分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.23.(8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?24.(8分)某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?25.(10分)在△ABC中,∠ABC=90°(1)作线段AC的垂直平分线1,交AC于点O:(保留作图痕迹,请标明字母)(2)连接BO并延长至D,使得OD=OB,连接DA、DC,证明四边形ABCD是矩形.26.(10分)如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.(1)求AG的长;(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;(3)求线段GH所在直线的解析式.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据题意找出用电量在71~80的家庭即可.【详解】解:用电量在71~80的家庭有:78,74,76,76,79共5户.
故选:B.【点睛】本题主要考查了数据的收集与整理,理清题意是解题的关键.2、D【解析】
因为平行四边形的两组对边分别相等,则平行四边形ABCD的周长为2(AB+BC),根据已知即可求出周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∴平行四边形ABCD的周长为2(AB+BC)=2×7=14cm.故选:D.【点睛】此题主要考查平行四边的性质:平行四边形的两组对边分别相等.3、C【解析】
根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.【详解】①每一个外角都等于60°的多边形是六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;④分式值为零的条件是分子为零且分母不为零,故正确;正确的有3个.故选C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.4、A【解析】
根据三角形中位线的性质得出DE的长度,然后根据EF=DF,DE+EF=DF求出DF的长度.【详解】解:∵D、E分别为AB和AC的中点,∴DE=BC=4,∵EF=DF,DE+EF=DF,∴DF=6,∴选A.【点睛】本题主要考查的是三角形中位线的性质,属于基础题型.理解中位线的性质是解决这个问题的关键.5、D【解析】
根据勾股定理分别求出、,根据三角形的面积公式分别求出第一个、第二个、第三个三角形的面积,总结规律,根据规律解答即可.【详解】解:第1个三角形的面积,由勾股定理得,,则第2个三角形的面积,,则第3个三角形的面积,则第个三角形的面积,故选:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.6、B【解析】
根据平均数和方差的意义解答.【详解】解:从平均数看,成绩最好的是乙、丙同学,
从方差看,乙方差小,发挥最稳定,
所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选乙,
故选:B.【点睛】本题考查平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、D【解析】
利用菱形的判定、平行四边形的判定、正方形的判定及矩形的性质逐一判断即可得答案.【详解】A.对角线互相垂直的平行四边形是菱形,故该选项错误,B.矩形的对角线一定相等,但不一定垂直,故该选项错误,C.一组对边平行且相等的四边形是平行四边形,故该选项错误,D.对角线相等的菱形是正方形,正确,故选D.【点睛】此题主要考查了菱形的判定、正方形的判定、平行四边形的判定及矩形的性质等知识,对角线互相垂直的平行四边形是菱形以及四条边相等的四边形是菱形;一组对边平行且相等的四边形是平行四边形;对角线相等的菱形是正方形;熟练掌握相关判定方法及性质是解题关键.8、C【解析】试题分析:根据对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查可分析出答案.解:(1)为了检测一批电视机的使用寿命适用抽样调查;(2)为了调查全国平均几人拥有一部手机适用抽样调查;(3)为了解本班学生的平均上网时间适用全面调查;(4)为了解中央电视台春节联欢晚会的收视率适用抽样调查;故选C.9、C【解析】
根据不等式组解集在数轴上的表示方法就可得到.【详解】解:x≥2的解集表示在数轴上2右边且为包含2的数构成的集合,在数轴上表示为:故答案为:C.【点睛】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、A【解析】试题分析:根据全等的直角三角形的性质依次分析各小题即可判断.用两个全等的直角三角形一定可以拼成平行四边形、矩形、等腰三角形故选A.考点:图形的拼接点评:图形的拼接是初中数学平面图形中比较基础的知识,,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.二、填空题(每小题3分,共24分)11、1【解析】
由于两个最简二次根式可以合并,因此它们是同类二次根式,即被开方数相同.由此可列出一个关于a的方程,解方程即可求出a的值.【详解】解:由题意,得1+2a=5−2a,解得a=1.故答案为1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.12、841【解析】
认真观察三个数之间的关系可得出规律:,由此规律即可解答问题.【详解】解:由已知等式可知,,∴故答案为:84、1.【点睛】本题考查了数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能由特殊得出一般规律.13、①②③【解析】
①根据函数图像的开口、对称轴以及与y轴的交点可得出a、b、c的正负,即可判断正误;②根据函数对称轴可得出a、b之间的等量关系,将转化为,再由函数与x轴的交点关于对称轴对称,可得出另一个交点是(-1,0),即可得出的结果,即可判断正误;③根据a、b之间的等量关系,将不等式中的b代换成a,化简不等式即可判断正误;④根据开口向下的函数有最大值,距离顶点越近的函数值越大,先判断M、N距离顶点的距离即可判断两个点y值得大小.【详解】解:①∵函数开口向下,∴,∵对称轴,,∴;∵函数与y轴交点在y轴上半轴,∴,∴;所以①正确;②∵函数对称轴为,∴,∴,∵A(3,0)是函数与x轴交点,对称轴为,∴函数与x轴另一交点为(-1,0);∵当时,,∴,②正确;③∵函数对称轴为,∴,∴将带入可化为:,∵,不等式左右两边同除a需要不等号变方向,可得:,即,此不等式一定成立,所以③正确;④M(-3,)、N(6,)为函数图象上的两点,∵点M距离顶点4个单位长度,N点距离顶点5个单位长度,函数开口向下,距离顶点越近,函数值越大,∴,所以④错误.故答案为①②③.【点睛】本题考查二次函数图像与系数的关系,可通过开口判断a的正负,再根据对称轴可判断a、b的关系,即“左同右异”,根据函数与y轴交点的正负可判断c的正负;根据对称轴的具体值可得出a、b之间的等量关系;在比较函数值大小的时候,开口向下的二次函数上的点距离顶点越近,函数值越大即可判断函数值大小.14、1【解析】
通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.【详解】如图,根据题意,AD=AC=6,,,,,即,,,这个风车的外围周长是,故答案为1.【点睛】本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.15、x【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x+1在实数范围内有意义,必须x16、【解析】
将x的值代入x2-2x+2028=(x-1)2+2027,根据二次根式的运算法则计算可得.【详解】解:当x=1-时,x2-2x+2028=(x-1)2+2027=(1--1)2+2027=(-)2+2027,=3+2027=1,故答案为:1.【点睛】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.17、x2+2x﹣3=0.【解析】
用因式分解的形式写出方程,再化为一般形式即可【详解】解:(x-1)(x+3)=0,
即x2+2x-3=0,
故答案为:x2+2x-3=0【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.18、24或21或【解析】
情况1:连接EP交AC于点H,依据先证明是菱形,再根据菱形的性质可得到∠ECH=∠PCH=10°,然后依据SAS可证明△ECH≌△PCH,则∠EHC=∠PHC=90°,最后依据EP=2EH=2sin10°•EC求解即可.情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.此时,=24
情况2:如图2:过点P′作P′F⊥BC.通过解直角三角形可以解得FC,EF,再在Rt△P′EF中,利用勾股定理可以求得.【详解】解:情况1:如图所示:连接EP交AC于点H.
∵在中,∴是菱形∵菱形ABCD中,∠B=10°,
∴∠BCD=120°,∠ECH=∠PCH=10°.
在△ECH和△PCH中,
∴△ECH≌△PCH.
∴∠EHC=∠PHC=90°,EH=PH.
∴EP=2EH=2sin10°•EC=2××2=1.∴=21
情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.∴=24
情况2:如图2:过点P′作P′F⊥BC.
∵P′C=2,BC=4,∠B=10°,
∴P′C⊥AB.
∴∠BCP′=20°.
∴FC=×2=2,P′F=,EF=2-2.∴=,
故答案为:24或21或.【点睛】本题主要考查的是菱形的性质,全等三角形的判定和性质,以及解直角三角形和勾股定理得结合,是综合性题目,难度较大.三、解答题(共66分)19、(1),见解析;(2),见解析;(3).【解析】
(1)根据点移到点,可得出平移的方向和距离,然后利用平移的性质分别求出点A1、B1的坐标即可解决问题;(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2,进一步即可解决问题;(3)利用勾股定理计算CC2的长,再判断出点C经过的路径长是以CC2为直径的半圆,然后根据圆的周长公式计算即可.【详解】解:解:(1)如图所示,则△A1B1C1为所求作的三角形,点A1的坐标是(﹣4,﹣1);(2)如图所示,则△A2B2C2为所求作的三角形,点A2的坐标是(4,2);(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,由勾股定理得:CC2=,∴点C经过的路径长:×π×=2π.【点睛】本题考查平移变换、旋转变换和勾股定理等知识,解题的关键是正确作出平移和旋转后的对应点.20、(1);(2)直线与的交点坐标;(3)存在点的坐标:或或.【解析】
1)直线与两坐标轴围成的面积,即可求解;(2)将直线经过2次斜平移,得到直线,即可求解;(3)分为直角、为直角、为直角三种情况,由等腰直角三角形构造K字形全等,由坐标建立方程分别求解即可.【详解】解:(1)矩形,,,直线交轴于点,把代入中,得,解得,直线,当,,;(2)将直线经过次斜平移,得到直线直线直线当,∴直线与的交点坐标;(3)①当为直角时,如图1所示:在第一象限内,在直线上不存在点;②当为直角时,,过点作轴的平行线分别交、于点、,如图(3),设点,点,,,,,,,,即:,解得:或,故点,或,,③当为直角时,如图4所示:,过Q点作FQ垂直于y轴垂足为F,过M点作MG垂直FQ垂足为G,同理可得:FQ=MG,AF=DG,设Q点坐标为(4,n),0<n<3,则AF=DG=3-n,FQ=MG=4则M点坐标为(7-n,4+n),代入,得,解得:故点;综上所述:点的坐标:或或【点睛】本题考查的是二次函数综合运用,涉及到等腰直角三角形的性质、图形的平移、面积的计算等,在坐标系中求解等腰直角三角形问题时构造K字型全等是解题关键.其中(3),要注意分类求解,避免遗漏.21、(1)见解析;(1)2.【解析】
(1)作BC的垂直平分线交优弧BC于A,则点A满足条件;
(1)利用圆周角定理得到∠ACD=90°,根据圆内接四边形的性质得∠CDE=∠BAC=45°,通过判断△DCE为等腰直角三角形得到CE=CD,然后根据勾股定理得到AC1+CE1=AC1+CD1=AD1.【详解】解:(1)如图1,点A为所作;
(1)如图1,连接CD,∵AD为直径,
∴∠ACD=90°,
∵∠CDE=∠BAC=45°,
∴△DCE为等腰直角三角形,
∴CE=CD,
∴AC1+CE1=AC1+CD1=AD1=41=2.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.22、2+【解析】试题分析:先求出x2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x2=(2﹣)2=7﹣4,则原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+1+=2+.23、(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【解析】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,根据工作时间工作总量工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A型机器安排m台,则B型机器安排台,根据每小时加工零件的总量型机器的数量型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.【详解】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,依题意,得:,解得:x=6,经检验,x=6是原方程的解,且符合题意,.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)设A型机器安排m台,则B型机器安排台,依题意,得:,解得:,为正整数,,答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.24、(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机1台,乙种型号的电视机0台;(2)方案一的利润大,最多为751元.【解析】
(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机1台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(1-x)台.则110x+2100(1-x)≤76000,解得:x≥48.则1≥x≥48.∵x是整数,∴x=49或x=1.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机1台,乙种型号的电视机0台;(2)方案一的利润为:49×(161-110)+(2300-2100)=751(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 正规劳动合同书电子版6篇
- 租房合同家私家电补充协议7篇
- 上海核酸检测试题及答案
- 中投集合资金信托合同3篇
- 【7语期末】涡阳县2023-2024学年七年级下学期期末考试语文试题
- 房屋交易资金代收代付协议与房屋使用权转让合同3篇
- 大道十字段建设项目劳务作业合同5篇
- 民族建筑装饰设计与应用
- 家装设计提案
- 外观结构设计课件
- 2024年高考全国甲卷英语试卷(含答案)
- 网站更新维护合同模板
- DB11T 466-2017 供热采暖系统维修管理规范
- 广东开放大学2024年秋《国家安全概论(S)(本专)》形成性考核作业参考答案
- 巨量-营销科学(初级)认证培训考试题库(含答案)
- 2024年河南省机关单位工勤技能人员培训考核高级工技师《职业道德》题库
- 初中生物教学课例2.3.1《植物细胞的结构和功能》课程思政核心素养教学设计及总结反思
- DBJ15 31-2016建筑地基基础设计规范(广东省标准)
- 山东省济南市历城区2023-2024学年七年级下学期期末语文试题(解析版)
- 2024年湖南省中考道德与法治试题卷(含答案解析)
- 极坐标法课件讲解
评论
0/150
提交评论