




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市石碣丽江学校2024年八年级数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在中,分别以点为圆心,大于长为半径作弧,两弧交于点,作直线分别交,于点,连接,下列结论错误的是()A. B. C. D.平分2.在学习平行四边形时,数学兴趣学习小组设计并组织了“生活中的平行四边形”比赛,全班同学的比赛结果统计如下表所示,则得分的众数和中位数分别为()A.70分,70分 B.80分,80分C.70分,80分 D.80分,70分3.下列命题中是真命题的有()个.①当x=2时,分式的值为零②每一个命题都有逆命题③如果a>b,那么ac>bc④顺次连接任意四边形各边中点得到的四边形是平行四边形⑤一组对边平行,另一组对边相等的四边形是平行四边形.A.0 B.1 C.2 D.34.不等式组有()个整数解.A.2 B.3 C.4 D.55.如图,四边形和四边形都是正方形,边在轴上,边在轴上,点在边上,反比例函数,在第二象限的图像经过点,则正方形与正方形的面积之差为()A.6 B.8 C.10 D.126.如图,要测量被池塘隔开的A、C两点间的距离,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得EF两点间距离等于23米,则A、C两点间的距离为()米A.23 B.46 C.50 D.27.如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为()A.5 B. C. D.8.在平面直角坐标系中,点(﹣2,﹣a2﹣3)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.计算的结果为()A.2 B.-4 C.4 D.±410.某班名男生参加中考体育模拟测试,跑步项目成绩如下表:成绩(分)人数则该班男生成绩的中位数是()A. B. C. D.11.下列命题中,为假命题的是()A.两组邻边分别相等的四边形是菱形 B.对角线互相垂直平分的四边形是菱形C.四个角相等的四边形是矩形 D.对角线相等的平行四边形是矩形12.一组数据1,2,的平均数为2,另一组数据-l,,1,2,b的唯一众数为-l,则数据-1,,,1,2的中位数为()A.-1 B.1 C.2 D.3二、填空题(每题4分,共24分)13.若<0,则代数式可化简为_____.14.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是
.15.某校举行“纪念香港回归21周年”演讲比赛,共有15名同学进入决赛(决赛成绩互不相同),比赛将评出金奖1名,银奖3名,铜奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的是有关成绩的________.(填“平均数”“中位数”或“众数”)16.一次函数y=-2x+4的图象与坐标轴所围成的三角形面积是_____.17.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是,众数是.18.化简:=__________.三、解答题(共78分)19.(8分)安德利水果超市购进一批时令水果,20天销售完毕,超市将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量(千克)与销售时间(天)之间的函数关系如图甲所示,销售单价(元/千克)与销售时间(天)之间的函数关系如图乙所示。(1)直接写出与之间的函数关系式;(2)分别求出第10天和第15天的销售金额。(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?20.(8分)计算:(1)﹣;(2)21.(8分)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?22.(10分)如图,是边长为2的等边三角形,将沿直线平移到的位置,连接.(1)求平移的距离;(2)求的长.23.(10分)如图,已知等腰Rt△ABC中,AB=AC,∠BAC=,点A、B分别在x轴和y轴上,点C的坐标为(6,2).(1)如图1,求A点坐标;(2)如图2,延长CA至点D,使得AD=AC,连接BD,线段BD交x轴于点E,问:在x轴上是否存在点M,使得△BDM的面积等于△ABO的面积,若存在,求点M的坐标;若不存在,请说明理由.24.(10分)计算:(1)3(6﹣3)+(2+1)1.(1)(50﹣8)÷225.(12分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系.已知,,,点为轴上一动点,以为一边在右侧作正方形.(1)若点与点重合,请直接写出点的坐标.(2)若点在的延长线上,且,求点的坐标.(3)若,求点的坐标.26.(1)先化简,再求值:÷(﹣),其中a2+3a﹣1=1.(2)若关于x的分式方程+1的解是正数,求m的取值范围.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据题意可知DE是AB的垂直平分线,由此即可得出△AEB是等腰三角形,据此作出判断.【详解】由题可知,是的垂直平分线,∴,,故A、C选项正确;∵是等腰的外角,∴,故B选项正确;D无法证明,故选:D.【点睛】本题考查了线段的垂直平分线的性质、等腰三角形的性质,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.2、C【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:∵70分的有12人,人数最多,∴众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、C【解析】
根据分式为0的条件、命题的概念、不等式的性质、平行四边形的判定定理进行判断即可.【详解】①当x=2时,分式无意义,①是假命题;②每一个命题都有逆命题,②是真命题;③如果a>b,c>0,那么ac>bc,③是假命题;④顺次连接任意四边形各边中点得到的四边形是平行四边形,④是真命题;⑤一组对边平行,另一组对边相等的四边形不一定是平行四边形,⑤是假命题,故选C.4、C【解析】
求出不等式组的解集,即可确定出整数解.【详解】,由①得:x>﹣,由②得:x≤3,∴不等式组的解集为﹣<x≤3,则整数解为0,1,2,3,共4个,故选C.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的确定方法是解题的关键.5、B【解析】
设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),根据E在反比例函数上得到(a+b)(a-b)=8,再求出S正方形AOBC=a2,S正方形CDEF=b2,即可求出面积之差.【详解】设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),∵E在反比例函数上∴(a+b)(a-b)=8,即a2-b2=8∴S正方形AOBC-S正方形CDEF=a2-b2=8故选B.【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意找到E点坐标.6、B【解析】
先判断出EF是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2EF.【详解】解:∵点E、F分别是BA和BC的中点,∴EF是△ABC的中位线,∴AC=2EF=2×23=46米.故选:B.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.7、C【解析】
在中,根据求出OC,再利用面积法可得,由此求出AE即可.【详解】四边形ABCD是菱形,,,,在中,,,故,解得:.故选C.【点睛】此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.8、C【解析】
根据直角坐标系的坐标特点即可判断.【详解】解:∵a2+3≥3>0,∴﹣a2﹣3<0,∴点(﹣2,﹣a2﹣3)一定在第三象限.故选C.【点睛】此题主要考查直角坐标系点的特点,解题的关键是熟知各象限坐标特点.9、C【解析】
根据算术平方根的定义进行计算即可.【详解】解:=4,故选C.【点睛】本题主要考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.10、C【解析】
将一组数据按照大小顺序排列,位于最中间的那个数或两个数的平均数就是该组数据的中位数,据此结合题意进一步加以计算即可.【详解】∵该班男生一共有18名,∴中位数为按照大小顺序排序后第9与第10名的成绩的平均数,∴该班男生成绩的中位数为:,故选:C.【点睛】本题主要考查了中位数的定义,熟练掌握相关概念是解题关键.11、A【解析】
根据特殊的平行四边形的判定即可逐一判断.【详解】解:两组邻边分别相等的四边形不一定是菱形,如AB=AD,CB=CD,但AB≠CB的四边形,故选项A中的命题是假命题,故选项A符合题意;
对角线互相垂直平分的四边形是菱形是真命题,故选项B不符合题意;
四个角相等的四边形是矩形是真命题,故选项C不符合题意;
对角线相等的平行四边形是矩形是真命题,故选项D不符合题意;
故选:A.【点睛】本题考查命题与定理,解答本题的关键是明确题意,熟练掌握特殊的平行四边形的判定定理,会判断命题的真假.12、B【解析】试题解析:∵一组数据1,2,a的平均数为2,
∴1+2+a=3×2
解得a=3
∴数据-1,a,1,2,b的唯一众数为-1,
∴b=-1,
∴数据-1,3,1,2,b的中位数为1.
故选B.点睛:中位数就是讲数据按照大小顺序排列起来,形成一个数列,数列中间位置的那个数.二、填空题(每题4分,共24分)13、【解析】
二次根式有意义,就隐含条件b>1,由ab<1,先判断出a、b的符号,再进行化简即可.【详解】若ab<1,且代数式有意义;故有b>1,a<1;则代数式=|a|=-a.故答案为:-a.【点睛】本题主要考查二次根式的化简方法与运用:当a>1时,=a;当a<1时,=-a;当a=1时,=1.14、k>0【解析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限。由题意得,y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,故。15、中位数【解析】试题分析:中位数表示的是这15名同学中成绩处于第八名的成绩,如果成绩是中位数以前,则肯定获奖,如果成绩是中位数以后,则肯定没有获奖.考点:中位数的作用16、4【解析】【分析】结合一次函数y=-2x+4的图象可以求出图象与x轴的交点为(2,0),以及与y轴的交点为(0,4),可求得图象与坐标轴所围成的三角形的面积.【详解】令y=0,则x=2;令x=0,则y=4,∴一次函数y=-2x+4的图象与x轴的交点为(2,0),与y轴的交点为(0,4).∴S=.故正确答案为4.【点睛】本题考查了一次函数图象与坐标轴的交点坐标.关键令y=0,可求直线与x轴的交点坐标;令x=0,可求直线与y轴的交点坐标.17、71【解析】
根据中位数和众数的定义解答.【详解】解:数据按从小到大排列:3,5,7,1,1,所以中位数是7;数据1出现2次,次数最多,所以众数是1.故填7;1.【点击】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.18、a+b【解析】
将原式通分相减,然后用平方差公式分解因式,再约分化简即可。【详解】解:原式====a+b【点睛】此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键.三、解答题(共78分)19、(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元.【解析】
(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额;
(3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式-6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据p=x+12(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.【详解】解:(1)分两种情况:
①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
∵直线y=k1x过点(15,30),
∴15k1=30,解得k1=2,
∴y=2x(0≤x≤15);
②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
∵点(15,30),(20,0)在y=k2x+b的图象上,
∴,解得:,
∴y=-6x+120(15<x≤20);
综上,可知y与x之间的函数关系式为:(2))∵第10天和第15天在第10天和第20天之间,
∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
∵点(10,10),(20,8)在p=mx+n的图象上,
∴,解得:,
∴(10≤x≤20),当时,销售单价为10元,销售金额为10×20=200(元);当时,销售单价为9元,销售金额为9×30=270(元);(3)若日销售量不低于1千克,则,当时,,由得;当时,,由,得,∴,∴“最佳销售期”共有16-12+1=5(天).∵,,∴随的增大而减小,∴当时,取12时有最大值,此时,即销售单价最高为9.6元.故答案为:(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元.【点睛】本题考查一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.20、(1)﹣;(2)13﹣4.【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式=3﹣﹣2=﹣;(2)原式=5﹣4+4+(13﹣9)=9﹣4+4=13﹣4.【点睛】本题考查了二次根式的运算,以及完全平方公式和平方差公式的运算,解题的关键是正确的运用运算法则进行运算.21、(1)证明见解析(2)添加AB=BC【解析】试题分析:(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.试题解析:(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB∥EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB∥AE,DB=AE∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.考点:矩形的判定;平行四边形的判定与性质.22、(1)2;(2)【解析】
(1)由平移的性质,即可得出平移距离;(2)由平移的性质以及边长关系,可判定∠BAE=90°,利用勾股定理即可得解.【详解】(1)∵△DCE由△ABC平移而成∴△ABC的平移距离为BC=2;(2)由平移,得BE=2BC=4,AB=AC=CE∵等边△ABC∴∠BAC=∠ACB=60°∴∠CAE=∠CEA=30°∴∠BAE=∠BAC+∠CAE=60°+30°=90°∴.【点睛】此题主要考查等边三角形、平移的性质以及勾股定理的运用,熟练掌握,即可解题.23、(1)A(2,0);(2)(0,0)(-,0).【解析】
(1)过C作CH⊥x轴于H,则CH=2,根据题意可证△ADB≌△CAH,所以OA=CH,又因点A在x轴上,所以点A的坐标为(2,0).(2)根据题意先求出点D的坐标为(2,-2),再根据△BDM的面积=△BEM的面积+△DEM的面积=△ABO的面积,列出方程解出M点的坐标.【详解】(1)过C作CH⊥x轴于H,则△ADB≌△CAH,又C(6,2),所以,OA=2,即A(2,0)(2)如图2所示,设点M的坐标为(x,0),∵AD=AC,∴点A是CD的中点,∵C(6,2),A(2,0)∴D(-2,-2).设直线BD的解析式为y=kx+b,则解得:∴直线BD的解析式为,令y=0,解得x=.∴E的坐标为(,0)∵△BDM的面积=△BEM的面积+△DEM的面积=△ABO的面积∴解得:或x=0.∴点M的坐标(0,0)或(-,0)..【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 叉车使用安全管理制度
- 口腔库房采集管理制度
- 卫生技术人员管理制度
- 商贸公司物业管理制度
- 房屋工程维修方案(3篇)
- 祠堂重建改造方案(3篇)
- 地铁安检基础管理制度
- 制剂车间各项管理制度
- 港口企业让利方案(3篇)
- 商城装修现场管理制度
- 欧洲文明概论学习通超星期末考试答案章节答案2024年
- 民兵知识小常识
- DBJ04∕T 290-2012 袖阀管注浆加固地基技术规程
- 2023年高考真题-地理(河北卷) 含答案
- 大学本科教学指导委员会章程
- 2024年高中学生主题班会 战鼓响全军出击!高三主题班会最后一课 课件
- GB/T 17775-2024旅游景区质量等级划分
- 橡胶坝工程施工质量验收评定表及填表说明
- 【词汇】近五年高考英语超纲词+音标+词义
- 热力学全册配套完整课件3
- 人教版五年级数学下册期末试卷(一套)
评论
0/150
提交评论