




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市枫杨外国语2024年数学八年级下册期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°2.若正比例函数的图象经过点(2,4),则这个图象也必经过点()A.(2,1) B.(﹣1,﹣2) C.(1,﹣2) D.(4,2)3.如图,已知四边形ABCD的对角线AC⊥BD,则顺次连接四边形ABCD各边中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形4.下面四个图形中,不是轴对称图形的是(
)A.
B.
C.
D.5.如图,正方形ABCD的边长为1,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为()A. B. C. D.6.如果一个三角形的三边长分别为6,a,b,且(a+b)(a-b)=36,那么这个三角形的形状为()A.锐角三角形 B.钝角三角形C.直角三角形 D.等边三角形7.下列图形中既是轴对称图形又是中心对称图形的是().A. B. C. D.8.若△ABC中,AB=13,BC=5,AC=12,则下列判断正确的是()A.∠A=90° B.∠B=90°C.∠C=90° D.△ABC是锐角三角形9.如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是()A.杨辉 B.刘徽 C.祖冲之 D.赵爽10.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD⊥AB于D,则CD的长是()A.5 B.7 C. D.11.方程的左边配成完全平方后所得方程为()A. B. C. D.12.如图,在长方形中,绕点旋转,得到,使,,三点在同一条直线上,连接,则是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形二、填空题(每题4分,共24分)13.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.14.如图,在菱形中,,过的中点作,垂足为点,与的延长线相交于点,则_______,_______.15.对于分式,当x______时,分式无意义;当x______时,分式的值为1.16.如图,函数()和()的图象相交于点,则不等式的解集为_________.17.某果农2014年的年收入为5万元,由于党的惠农政策的落实,2016年年收入增加到7.2万元,若平均每年的增长率是x,则x=_____.18.在直角坐标系中,直线y=x+2与y轴交于点A1,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+2上,点C三、解答题(共78分)19.(8分)如图,折叠长方形ABCD的一边AD,使点D落在BC上的点F处,已知AB=8,BC=10,求EC.20.(8分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=at(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?21.(8分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:△AFD≌△BFE;(2)求证:四边形AEBD是菱形;(3)若DC=,tan∠DCB=3,求菱形AEBD的面积.22.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).23.(10分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证△ACD≌△BFD(2)求证:BF=2AE;(3)若CD=,求AD的长.24.(10分)如图,中,平分交于点,为的中点.(1)如图①,若为的中点,,,,,求;(2)如图②,为线段上一点,连接,满足,.求证:.25.(12分)在▱ABCD中,AB=BC=9,∠BCD=120°.点M从点A出发沿射线AB方向移动.同时点N从点B出发,以相同的速度沿射线BC方向移动,连接AN,CM,直线AN、CM相交于点P.(1)如图甲,当点M、N分别在边AB、BC上时,①求证:AN=CM;②连接MN,当△BMN是直角三角形时,求AM的值.(2)当M、N分别在边AB、BC的延长线上时,在图乙中画出点P,并直接写出∠CPN的度数.26.如图①,直线与双曲线相交于点、,与x轴相交于C点.求点A、B的坐标及直线的解析式;求的面积;观察第一象限的图象,直接写出不等式的解集;如图,在x轴上是否存在点P,使得的和最小?若存在,请说明理由并求出P点坐标.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.2、B【解析】
设正比例函数解析式y=kx,将点(2,4)代入可求函数解析式y=2x,再结合选项进行判断即可.【详解】∵正比例函数的图象经过点(2,4),设正比例函数解析式y=kx,将点(2,4)代入可得k=2,∴函数解析式y=2x,将选项中点代入,可以判断(﹣1,﹣2)在函数图象上;故选:B.【点睛】考查正比例函数的图象及性质;熟练掌握函数图象的性质,会用待定系数法求函数解析式是解题的关键.3、A【解析】试题分析:如图:∵E、F、G、H分别是边AD、AB、BC、CD的中点,∴EF∥BD,GH∥BD,EF=BD,GH=BD,EH=AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形,∵AC=BD,EF=BD,EH=AC,∴EF=EH,∴平行四边形EFGH是菱形.故选B.考点:1.三角形中位线定理;2.菱形的判定.4、C【解析】
轴对称图形即沿一条线折叠,被折叠成的两部分能够完全重合,根据轴对称图形的特点分别分析判断即可.【详解】ABD、都是关于一条竖直轴对称,是轴对称图形,不符合题意;C、两半颜色不一样,大小也不是关于一条轴对称,不是轴对称图形,符合题意;故答案为:C.【点睛】此题主要考查轴对称图形的识别,解题的关键是熟知轴对称图形的定义.5、B【解析】
根据题意求出面积标记为S2的等腰直角三角形的直角边长,得到S2,同理求出S3,根据规律解答.【详解】∵正方形ABCD的边长为1,∴面积标记为S2的等腰直角三角形的直角边长为,则S2=面积标记为S3的等腰直角三角形的直角边长为×=,则S3=……则S2018的值为:,故选:B.【点睛】本题考查的是勾股定理、正方形的性质,根据勾股定理求出等腰直角三角形的边长是解题的关键.6、C【解析】
先根据平方差公式对已知等式进行化简,再根据勾股定理的逆定理进行判定即可.【详解】解:∵(a+b)(a-b)=36,∴,∴,∴三角形是直角三角形,故选C.【点睛】本题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.7、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项正确;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、C【解析】
13,12,5正好是一组勾股数,根据勾股定理的逆定理即可判断△ABC是直角三角形,从而求解.【详解】∵52+122=169,132=169,∴52+122=132,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.故选:C.【点睛】本题主要考查了勾股定理的逆定理,两边的平方和等于第三边的平方,则这个三角形是直角三角形.对于常见的勾股数如:3,4,5或5,12,13等要注意记忆.9、D【解析】
3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.【详解】由题意,可知这位伟大的数学家是赵爽.
故选:D.【点睛】考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.10、C【解析】
首先利用勾股定理计算出AB的长,再根据三角形的面积公式计算出CD的长即可.【详解】解:∵在Rt中,∠ACB=90°,AC=4,BC=3,∴AB=∵×AC×BC=×CD×AB,∴×3×4=×5×CD,解得:CD=.故选.【点睛】本题主要考查了勾股定理,以及三角形的面积,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和等于斜边长的平方.11、A【解析】
根据配方法的步骤对方程进行配方即可.【详解】解:移项得:x2+6x=5,
配方可得:x2+6x+9=5+9,
即(x+3)2=14,
故选:A.【点睛】本题考查用配方法解一元二次方程.熟练掌握用配方法解一元二次方程的具体步骤是解决此题的关键.12、D【解析】
证明∠GAE=90°,∠EAB=90°,根据旋转的性质证得AF=AC,∠FAE=∠CAB,得到∠FAC=∠EAB=90°,即可解决问题.【详解】解:∵四边形AGFE为矩形,
∴∠GAE=90°,∠EAB=90°;
由题意,△AEF绕点A旋转得到△ABC,
∴AF=AC;∠FAE=∠CAB,
∴∠FAC=∠EAB=90°,
∴△ACF是等腰直角三角形.
故选:D.【点睛】本题主要考查了旋转的性质和等腰三角形的定义,解题的关键是灵活运用旋转的性质来分析、判断、解答.二、填空题(每题4分,共24分)13、x>1.【解析】
∵直线y=x+b与直线y=kx+6交于点P(1,5),∴由图象可得,当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14、1【解析】
由菱形的性质可得AB=AD=CD=4,AB∥CD,由“ASA”可证△AEF≌△DEH,可得AF=HD=1,由三角形面积公式可求△CEF的面积.【详解】∵四边形是菱形,∴.∵点是的中点,∴.∵,∴,∴.∵,∴,且,∴,∴,∴.∴.故答案为:1,.【点睛】此题考查菱形的性质,全等三角形的判定和性质,直角三角形的性质,证明AF=HD=1是解题的关键.15、【解析】
根据分母为零时,分式无意义;分子为零且分母不为零,分式的值为1,据此分别进行求解即可得.【详解】当分母x+2=1,即x=-2时,分式无意义;当分子x2-9=1且分母x+2≠1,即x=2时,分式的值为1,故答案为=-2,=2.【点睛】本题考查了分式无意义的条件,分式的值为1的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(2)分式值为零⇔分子为零且分母不为零.16、【解析】
写出直线在直线下方部分的的取值范围即可.【详解】解:由图可知,不等式的解集为;故答案为:.【点睛】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.17、20%.【解析】
本题的等量关系是2014年的收入×(1+增长率)2=2016年的收入,据此列出方程,再求解.【详解】解:根据题意,得,即.解得:,(不合题意,舍去)故答案为20%.【点睛】本题考查了一元二次方程应用中求平均变化率的知识.解这类题的一般思路和方法是:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的一元二次方程方程为a(1±x)2=b.18、2【解析】
结合正方形的性质结合直线的解析式可得出:A2B1=OC1,A3B2=C1C2,A4B3【详解】解:令一次函数y=x+2中x=0,则y=2,∴点A1的坐标为(0,2),O∵四边形AnBn∴A1B1=OC1令一次函数y=x+2中x=2,则y=4,即A2∴A∴tan∵A∴tan∴A2B1=OC1∴S1=12OC∴Sn=故答案为:22n-1【点睛】本题考查一次函数图象上点的坐标特征、正方形的性质、三角形的面积公式的知识,解题关键在于找到规律,此题属规律性题目,比较复杂.三、解答题(共78分)19、EC=1【解析】
根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【详解】∵四边形ABCD为矩形,
∴DC=AB=8cm;∠B=∠C=90°;
由题意得:AF=AD=10,
设EF=DE=xcm,EC=8-x;
由勾股定理得:BF2=102-82,
∴BF=6,
∴CF=10-6=4;
在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,
解得:x=5,
EC=8-5=1.
故答案为:1【点睛】此题主要考查了翻折变换的性质、矩形的性质、勾股定理;运用勾股定理得出方程是解决问题的关键解题的关键.20、(1)y=23t(0≤t≤3【解析】
(1)将点代入函数关系式,解得,有将代入,得,所以所求反比例函数关系式为;再将代入,得,所以所求正比例函数关系式为.(2)解不等式,解得,所以至少需要经过6小时后,学生才能进入教室.21、(1)见解析;(2)见解析;(3)S菱形AEBD=1.【解析】
(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(3)解直角三角形求出EF的长即可解决问题;【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE(AAS);(2)∵△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(3)∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE==1.【点睛】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22、(1)①详见解析;②12;(2).【解析】
(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【详解】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴,∴,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S四边形BMDN=BD×MN=×6×2=12;(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴.故答案为.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.23、(1)见解析;(1)见解析;(3)AD=1+【解析】
(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等;(1)根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AE,从而得证;(3)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【详解】(1)∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,∴△ACD≌△BFD(ASA)(1)由(1)可知:BF=AC∵AB=BC,BE⊥AC,∴AC=1AE,∴BF=1AE;(3)∵△ACD≌△BFD,∴DF=CD=,在Rt△CDF中,CF=,∵BE⊥AC,AE=EC,∴AF=CF=1.∴AD=AF+DF=1+【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.24、(1)(2)见解析【解析】
(1)根据平行四边形的性质得出AB∥CD,AD∥BC,由DF平分∠ADC可得△DCF为等腰三角形,即DC=FC=8,再根据AB⊥CD得出△ACD为直角三角形,由G是HD的中点得出DH=2GC=,利用勾股定理得出HC=4,即AH=5,最后根据为的中点,即可得出MG的值.(2)过点D作DN∥AC交CG延长线于N,可得,,由G是DH的中点得,故,即,再由四边形ABCD是平行四边形可得∠DAC=∠ACB=∠AND,根据三角形内角和定理可得∠BMF=∠AND,∠BMF+∠B=∠AND+∠ADC,再由∠MFC=∠NDC,且CF=CD,∠FCM=∠DCM证明得出△MFC△NDC(ASA),即可得出CM=CN=2CG.【详解】(1)四边形ABCD是平行四边形AB∥CD,AD∥BC又AD∥BC∠ADF=∠DFCDF平分∠ADC∠ADF=∠FDC∠DFC=∠FDC△DCF为等腰三角形CD=FC=8AB⊥CD且AB∥CDAC⊥CD△ACD为直角三角形又G是HD的中点且GC=DH=2GC=(斜边中线=斜边的一半)RT△HCD中DC=8,HD=AC=9AH=5M是AD的中点.(2)证明:过点D作DN∥AC交CG延长线于N,G是DH的中点,且∠N=∠ACG,∠CGH=∠DGN又四边形ABCD是平行四边形∠B=∠ADC,AD∥BC∠DAC=∠ACB=∠AND∠MFB=∠BAC,且∠BMF=180°-∠B-∠BFM,∠ACB=180°-∠B-∠BAC∠BMF=∠ACB∠BMF=∠ADN∠BMF+∠B=∠AND+∠ADC∠MFC=∠NDC,且CF=CD,∠FCM=∠DCM△MFC△NDC(ASA)CM=CN=2CG【点睛】本题主要考查平行四边形的性质、斜边的性质、勾股定理,解题关键是熟练掌握平行四边形的性质及斜边的性质,利用勾股定理求出AH的值.25、(1)①见解析②3或6(2)120°【解析】
(1)①连接AC,先证△ABC是等边三角形得AB=CA=9、∠B=∠CAB=60°,由BN=AM证△ABN≌△CAM即可得;②分∠MNB=90°和∠NMB=90°两种情况,由∠B=60°得出另一个锐角为30°,根据直角三角形中30°角所对边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年西安市灞桥区纺织城小学教师招聘考前自测高频考点模拟试题及答案详解(全优)
- 2025年金华市卫生健康委员会所属医院金华市第二医院招聘7人(第一批)考前自测高频考点模拟试题及完整答案详解1套
- 2025年甘肃省嘉峪关市第八中学、嘉峪关市明珠学校分校区招聘公益性岗位人员模拟试卷及一套答案详解
- 2025大唐锡林浩特电厂招聘专职消防员1人考前自测高频考点模拟试题附答案详解(典型题)
- 室内安装桥架安全协议书8篇
- 2025江苏东南大学招聘5人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025福建福州市罗源县社会救助协管员招聘1人考前自测高频考点模拟试题及1套参考答案详解
- 2025辽宁长海县银龄教师招聘6人考前自测高频考点模拟试题参考答案详解
- 2025年广东惠州市公安局惠城区分局第二批辅警招聘48人模拟试卷及1套参考答案详解
- 2025年山西焦煤集团所属煤炭子公司井下操作技能人员招聘考前自测高频考点模拟试题及答案详解(各地真题)
- 安徽省农村信用社联合社2026年校园招聘备考考试题库附答案解析
- 化工安全三级培训考试题及答案解析
- 2025加工定做合同范本
- 2025湖北宜昌市不动产交易和登记中心招聘编外聘用人员17人考试参考试题及答案解析
- 教PEP版六年级英语上册第一次月考试卷(Unit 1-2).(含答案含听力原文)
- 铁路局安全理论培训课件
- 物流配送调度管理系统设计方案
- 35kV线路工程电杆安装施工方案
- 2025年乡镇工会集体协商指导员招聘考试试题库及答案
- 2025-2026学年苏教版(2024)小学科学二年级上册教学计划及进度表
- 2025年度环评文件技术复核服务方案投标文件(技术方案)
评论
0/150
提交评论