安徽省阜阳九中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
安徽省阜阳九中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
安徽省阜阳九中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
安徽省阜阳九中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
安徽省阜阳九中学2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳九中学2024年八年级数学第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长是()A.18 B.20 C.22 D.262.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数 B.方差 C.平均数 D.中位数3.下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A.1个 B.2个 C.3个 D.4个4.一个装有进水管和出水管的空容器,从某时刻开始内只进水不出水,容器内存水,在随后的内既进水又出水,容器内存水,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量(单位:)与时间(单位:)之间的函数关系的图象大致的是()A. B.C. D.5.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是A.1个 B.2个 C.3个 D.4个6.鞋子的“鞋码”和鞋长存在一种换算关系,下表是几组鞋长与“鞋码”换算的对应数值(注:“鞋码”是表示鞋子大小的一种号码).设鞋长x,“鞋码”为y,试判断点在下列哪个函数的图象上()鞋长16192123鞋码(码)22283236A. B.C. D.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形8.如图,是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”的这位数学家是()A.毕达哥拉斯 B.祖冲之 C.华罗庚 D.赵爽9.下列方程中,有实数解的方程是()A. B.C. D.10.已知点,,都在直线上,则,,的大小关系是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,AF是△ABC的高,点D.E分别在AB、AC上,且DE||BC,DE交AF于点G,AD=5,AB=15,AC=12,GF=6.求AE=____;12.若二次根式有意义,则x的取值范围是________.13.若是一个正整数,则正整数m的最小值是___________.14.计算:(﹣1)0+(﹣)﹣2=_____.15.已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是_______________16.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____17.如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.18.如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.三、解答题(共66分)19.(10分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(1)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A1B1C1D1.20.(6分)某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?21.(6分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上.(1)在图中直接画出O点的位置;(2)若以O点为平面直角坐标系的原点,线段AD所在的直线为y轴,过点O垂直AD的直线为x轴,此时点B的坐标为(﹣2,2),请你在图上建立平面直角坐标系,并回答下面的问题:将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1,并直接写出点B1的坐标.22.(8分)如图,四边形是面积为的平行四边形,其中.(1)如图①,点为边上任意一点,则的面积和的面积之和与的面积之间的数量关系是__________;(2)如图②,设交于点,则的面积和的面积之和与的面积之间的数量关系是___________;(3)如图③,点为内任意一点时,试猜想的面积和的面积之和与的面积之间的数量关系,并加以证明;(4)如图④,已知点为内任意一点,的面积为,的面积为,连接,求的面积.23.(8分)如图,已知线段a,b,∠α(如图).(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作____个.(2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作_____个,作出满足条件的平行四边形(要求仅用直尺和圆规,保留作图痕迹,不写做法)24.(8分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95003E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=______,n=______;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.25.(10分)珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.26.(10分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据函数的图象、结合图形求出AB、BC的值,即可得出矩形ABCD的周长.【详解】解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5,∴AB=5,BC=4,∴矩形ABCD的周长=2(AB+BC)=1.故选A.【点睛】本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出AB、BC的长度是解决问题的关键.2、D【解析】

根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.3、C【解析】

根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.4、A【解析】

根据只进水不出水、既进水又出水、只出水不进水这三个时间段逐一进行分析即可确定答案.【详解】∵从某时刻开始内只进水不出水,容器内存水;∴此时容器内的水量随时间的增加而增加,∵随后的内既进水又出水,容器内存水,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选A.【点睛】本题考查了函数的图象,弄清题意,正确进行分析是解题的关键.5、D【解析】①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,而150-125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.故选D.6、B【解析】

设一次函数y=kx+b,把两个点的坐标代入,利用方程组即可求解.【详解】解:设一次函数y=kx+b,把(16,22)、(19,28)代入得;解得,∴y=2x-10;

故选:B.【点睛】此题考查一次函数的实际运用,利用待定系数法求函数解析式的问题.7、D【解析】

根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项不符合题意;B.根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项不符合题意;C.根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项不符合题意;D.根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项符合题意;故选:D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.8、D【解析】

我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.【详解】解:我国三国时期数学家赵爽在为《周髀算经》作注解时创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.故答案是:D.【点睛】本题考查了学生对我国数学史的了解,籍此培养学生的爱国情怀和民族自豪感,增强学习数学的兴趣.9、C【解析】

根据二次根式的非负性,可判断A、D无实数根,C有实数根,B解得x=2是分式方程的增根.【详解】A中,要使二次根式有意义,则x-2≥0,2-x≥0,即x=2,等式不成立,错误;B中,解分式方程得:x=2,是方程的增根,错误;D中,≥0,则≥3,等式不成立,错误;C中,∵,其中≥0,故-1≤x≤0解得:x=(舍),x=(成立)故选:C【点睛】本题考查二次根式的非负性和解分式方程,注意在求解分式方程时,一定要验根.10、C【解析】

中,,所以y随x的增大而减小,依据三点的x值的大小即可确定y值的大小关系.【详解】解:y随x的增大而减小又故答案为:C【点睛】本题考查了一次函数的性质,正确理解并应用其性质是解题的关键.二、填空题(每小题3分,共24分)11、4【解析】

证明△ADE∽△ABC,利用相似三角形的对应边的比相等即可求解;【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,解得AE=4;故答案为:4【点睛】此题考查相似三角形的判定与性质,难度不大12、【解析】

根据二次根式有意义的条件可得-x≥0,再解不等式即可.解答【详解】由题意得:-x⩾0,解得:,故答案为:.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其定义.13、5【解析】

由于是一个正整数,所以根据题意,也是一个正整数,故可得出m的值.【详解】解:∵是一个正整数,∴根据题意,是一个最小的完全平方数,∴m=5,故答案为5.【点睛】本题主要考查了二次根式的定义,正确对二次根式进行化简并找到被开方数是解答本题的关键.14、5【解析】

按顺序分别进行0次幂运算、负指数幂运算,然后再进行加法运算即可.【详解】(﹣1)0+(﹣)﹣2=1+4=5,故答案为:5.【点睛】本题考查了实数的运算,涉及了0指数幂、负整数指数幂,熟练掌握各运算的运算法则是解题的关键.15、m<【解析】当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2.故答案为m<1/2.16、()1.【解析】

首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【详解】∵四边形ABCD为正方形,

∴AB=BC=1,∠B=90°,

∴AC2=12+12,AC=;

同理可求:AE=()2,HE=()3…,

∴第n个正方形的边长an=()n-1,

∴第2016个正方形的边长为()1,

故答案为()1.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.17、1【解析】

根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.【详解】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得

3x=20−2x.

解得x=1,

故答案为:1.【点睛】本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键.18、或或【解析】

由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.【详解】解:∵∠C=90°,∠A=30°,BC=9,∴∠B=60°,AB=2BC=18,①当∠BQP=90°时,如图1所示:则AC∥PQ,∴∠BPQ=30°,BP=2BQ,∵BP=18-3t,BQ=t,∴18-3t=2t,解得:t=;②当∠QPB=90°时,如图2所示:∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,若0<t<6时,则t=2(18-3t),解得:t=,若6<t≤9时,则t=2(3t-18),解得:t=;故答案为:或或.【点睛】本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.三、解答题(共66分)19、(1)图略(1)向右平移10个单位,再向下平移一个单位.(答案不唯一)【解析】(1)D不变,以D为旋转中心,顺时针旋转90°得到关键点A,C,B的对应点即可;(1)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几个单位.20、(1)甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.【解析】

(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据“用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍”列出方程,解之可得;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,由“投入资金不多于11.5万元”列出关于m的不等式,解之求得m的取值范围,继而得到整数m的可能取值,从而可得所有方案.【详解】解:(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据题意,得:,解得:x=0.4,经检验:x=0.4是原分式方程的解,所以甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,根据题意,得:0.4m+0.2(40﹣m)≤11.5,解得:m≤17.5,又m≥14,∴14≤m≤17.5,则整数m的值可以是14,15,16,17,所以商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.【点睛】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题中的等量关系是解本题的关键.21、(1)详见解析;(2)图详见解析,点B1的坐标为(2,0).【解析】

(1)利用BF、AD、CE,它们的交点为O点;

(2)根据题意建立直角坐标系,利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1.【详解】(1)如图,点O为所作;(2)如图,△A1B1C1,为所作,点B1的坐标为(2,0).【点睛】本题考查了中心对称、建立平面直角坐标系及图形的平移,掌握成中心对称的图形的性质及平移的性质是关键.22、(1);(2);(3)结论:;理由见解析;(4)6【解析】

(1)根据平行四边形的性质可知:,即可解决问题;(2)理由平行四边形的性质可知:,即可解决问题;(3)结论:.如图③中,作于,延长交于.根据;(4)设的面积为,的面积为,则,推出,可得的面积;【详解】解:(1)如图①中,,.四边形是平行四边形,,,,.故答案为.(2)如图②中,四边形是平行四边形,,,,.故答案为.(3)结论:.理由:如图③中,作于,延长交于.,,,.(4)设的面积为,的面积为,则,,的面积,【点睛】本题考查平行四边形的判定和性质、平行线的性质、等高模型等正整数,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23、(1)无数;(2)图形见解析;1.【解析】

(1)内角不固定,有无数个以线段a,b为一组邻边作平行四边形;(2)作∠MAN=a,以A为圆心,线段a和线段b为半径画弧分别交射线AN和AM于点D和B,以D为圆心,线段b为半径画弧,以B为圆心,线段a为半径画弧,交于点C;连接BC,DC.则平行四边形ABCD就是所求作的图形.【详解】解:(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作无数个,故答案为:无数;(2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作1个,如图所示:四边形ABCD即为所求.故答案为:1.【点睛】此题主要考查平行四边形的作法,熟练掌握作图方法是解题的关键.24、(1)4;1;(2)见解析;(3)B;(4)48.【解析】

(1)根据题目中的数据即可直接确定m和n的值;

(2)根据(1)的结果即可直接补全直方图;

(3)根据中位数的定义直接求解;

(4)利用总人数乘以对应的比例即可求解.【详解】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;

9500≤x<10500的有9865这1个,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论