




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省鄂州市梁子湖区吴都中学2024年八年级下册数学期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若分式x2-1x2+x-2的值为零,则A.x=1 B.x=±1 C.x=-1 D.x≠12.如图,△ABC中AB=AC,点D在AC边上,且BD=BC=AD,则∠A度数为()A.30° B.36° C.45° D.70°3.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定4.当k>0,b<0时,函数y=kx+b的图象大致是()A. B.C. D.5.莒南县欲从某师范院校招聘一名“特岗教师”,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩面试86919083笔试90838392根据录用程序,作为人民教师面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,你认为将录取()A.甲 B.乙 C.丙 D.丁6.下列平面图形中,既是轴对称图形又是中心对称图形的是(
)A. B. C. D.7.下列式子:①;②;③;④.其中是的函数的个数是()A.1 B.2 C.3 D.48.如图,一次函数()的图象经过,两点,则关于的不等式的解集是()A. B. C. D.9.在平面直角坐标系的第一象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,-4). B.(4,-3). C.(3,4). D.(4,3).10.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4π B.2π C.π D.二、填空题(每小题3分,共24分)11.如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则的度数等于___________.12.已知命题:全等三角形的对应角相等.这个命题的逆命题是:__________.13.□ABCD中,AB=6,BC=4,则□ABCD的周长是____________.14.如图,菱形ABCD对角线AC=6cm,BD=8cm,AH⊥BC于点H,则AH的长为_______.15.如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.16.点M(a,2)是一次函数y=2x-3图像上的一点,则a=________.17.对于实数x,我们[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值范围是______.18.已知点,关于x轴对称,则________.三、解答题(共66分)19.(10分)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点
B、C,如果四边形OBAC是正方形.
(1)求一次函数的解析式。(2)一次函数的图象与y轴交于点D.在x轴上是否存在一点P,使得PA+PD最小?若存在,请求出P点坐标及最小值;若不存在,请说明理由。20.(6分)学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.(1)若连接AC,试证明:OABC是直角三角形;(2)求这块地的面积.21.(6分)先阅读下面的内容,再解决问题:问题:对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与成为一个完全平方式,再减去,整个式子的值不变,于是有:像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:______;(2)若△ABC的三边长是a,b,c,且满足,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式有最大值?并求出这个最大值.22.(8分)为了落实党的“精准扶贫”政策,A、B两城决定向C,D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨:从B城往C,D两乡运肥料的费用分别为15元/吨和24元/吨,现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求y与x的函数关系式.(3)怎样调运才能使总运费最少?并求最少运费.23.(8分)如图,在▱ABCD中,CE平分∠BCD,且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠B=52°,求∠1的大小.24.(8分)在Rt△ABC中,∠C=90°,AC=6,BC=1.在CB上找一点E,使EB=EA(利用尺规作图,保留作图痕迹),并求出此时CE的长.25.(10分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.26.(10分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?
参考答案一、选择题(每小题3分,共30分)1、C【解析】
直接利用分式的值为零则分子为零,分母不为零,进而得出答案.【详解】解:∵分式x2∴x2−1=0且x2+x−2≠0,解得:x=−1.故选:C.【点睛】此题主要考查了分式的值为零的条件,正确解方程是解题关键.2、B【解析】
∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°,∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°.故选B.考点:1.等腰三角形的性质;2.三角形内角和定理.3、D【解析】
解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;5出现的次数最多,所以众数是5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,故选D.【点睛】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.4、D【解析】由一次函数图象与系数的关系可得,当k>0,b<0时,函数y=kx+b的图象经过一三四象限.故选D.5、B【解析】
根据加权平均数的公式分别求出甲、乙、丙、丁四人的平均成绩,做比较后即可得出结论.【详解】甲的平均成绩为:×(86×6+90×4)=87.6(分),乙的平均成绩为:×(91×6+83×4)=87.8(分),丙的平均成绩为:×(90×6+83×4)=87.2(分),丁的平均成绩为:×(83×6+92×4)=86.6(分),∵87.8>87.6>87.2>86.6,∴乙的平均成绩最高.故选B.【点睛】本题考查了加权平均数,解题的关键是能够熟练的运用加权平均数的公式求一组数据的加权平均数.本题属于基础题,难度不大,牢牢掌握加权平均数的公式是关键.6、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A不是轴对称图形,是中心对称图形;B是轴对称图形,也是中心对称图形;C和D是轴对称图形,不是中心对称图形.故选B.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.7、C【解析】
根据以下特征进行判断即可:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.【详解】解:①y=3x-5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数.④,y是x的函数.以上是的函数的个数是3个.故选:C.【点睛】本题主要考查的是函数的概念,掌握函数的定义是解题的关键.8、C【解析】
根据图像,找到y>0时,x的取值范围即可.【详解】解:由图像可知:该一次函数y随x的增大而增大,当x=-3时,y=0∴当x>-3时,y>0,即∴关于的不等式的解集是故选C.【点睛】此题考查的是一次函数与一元一次不等式的关系,掌握一次函数的图象及性质与一元一次不等式的解集的关系是解决此题的关键.9、D【解析】
根据第一象限内点的坐标特征,可得答案.【详解】解:由题意,得
x=4,y=3,
即M点的坐标是(4,3),
故选:D.【点睛】本题考查点的坐标,熟记各象限内点的坐标特征是解题关键.10、B【解析】
如图,连接AO,BO,先求出∠AOC的长,再根据弧长公式求出的长即可.【详解】如图,连接AO,BO,根据题意可知,∠CDA=180°-∠B=180°-135°=45°,∴∠AOC=2∠CDA=90°,∴.故选B.【点睛】本题主要考查弧与圆周角的关系、圆周角定理以及弧长公式,求出∠AOC的大小是解答本题的关键.二、填空题(每小题3分,共24分)11、30°【解析】
根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【详解】∵CC′∥AB,∴∠ACC′=∠CAB=75°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,∴∠CAC′=∠BAB′=30°.故答案为:30°.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.12、对应角相等的三角形全等【解析】
根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【详解】命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,
故其逆命题是对应角相等的三角形是全等三角形.
故答案是:对应角相等的三角形是全等三角形.【点睛】考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13、1【解析】
根据平行四边形的对边相等,可得AB=CD,AD=BC,所以可求得的周长为1.【详解】∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC=4,∴的周长为1.故答案为1.【点睛】本题考查平行四边形的性质:平行四边形的对边相等.14、cm【解析】
根据菱形的性质求出BC=5,然后根据菱形ABCD面积等于BC∙AH进一步求解即可.【详解】∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AH,∴BC×AH=24,∴AH=cm.故答案为:cm.【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键.15、1.【解析】
根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.【详解】解:y=x-4,
当y=0时,x-4=0,
解得:x=4,
即OA=4,
过B作BC⊥OA于C,
∵△OAB是以OA为斜边的等腰直角三角形,
∴BC=OC=AC=2,
即B点的坐标是(2,2),
设平移的距离为a,
则B点的对称点B′的坐标为(a+2,2),
代入y=x-4得:2=(a+2)-4,
解得:a=4,
即△OAB平移的距离是4,
∴Rt△OAB扫过的面积为:4×2=1,
故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.16、.【解析】
解:因为点M(a,2)是一次函数y=2x-3图象上的一点,∴2=2a-3,解得a=故答案为:.17、46≤x<1【解析】分析:根据题意得出5≤<6,进而求出x的取值范围,进而得出答案.详解:∵[x]表示不大于x的最大整数,[]=5,∴5≤<6解得:46≤x<1.故答案为46≤x<1.点睛:本题主要考查了不等式组的解法,得出x的取值范围是解题的关键.18、【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.【详解】解:∵点,关于x轴对称,
∴,
∴.
故答案为:.【点睛】此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.三、解答题(共66分)19、(1)y=x+1;(2)(,0)【解析】
(1)若四边形OBAC是正方形,那么点A的横纵坐标相等,代入反比例函数即可求得点A的坐标,进而代入一次函数即可求得未知字母k.(2)在y轴负半轴作OD′=OD,连接AD′,与x轴的交点即为P点的坐标,进而求出P点的坐标.【详解】(1)∵四边形OBAC是正方形,∴S四边形OBAC=AB=OB=9,∴点A的坐标为(3,3),∵一次函数y=kx+1的图象经过A点,∴3=3k+1,解得k=,∴一次函数的解析式y=x+1,(2)y轴负半轴作OD′=OD,连接AD′,如图所示,AD′与x轴的交点即为P点的坐标,∵一次函数的解析式y=x+1,∴D点的坐标为(0,1),∴D′的坐标为(0,−1),∵A点坐标为(3,3),设直线AD′的直线方程为y=mx+b,即,解得m=,b=−1,∴直线AD′的直线方程为y=x−1,令y=0,解得x=,∴P点坐标为(,0)【点睛】此题考查反比例函数综合题,解题关键在于熟练掌握一次函数和反比例函数的性质.20、(1)见解析;(2)这块地的面积是24平方米.【解析】
(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理解答即可;(2)根据三角形的面积公式求解即可.【详解】(1)∵AD=4,CD=3,AD⊥DC,由勾股定理可得:AC=,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形;(2)△ABC的面积△ACD的面积==24(m2),所以这块地的面积是24平方米.【点睛】本题考查了勾股定理及勾股定理逆定理的应用,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.反之也成立.21、(1)(a−3)(a−1);(2)当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)当x=−1时,多项式−2x2−4x+3有最大值,最大值是1.【解析】
(1)根据题目中的例子,可以对题目中的式子配方后分解因式;(2)根据题目中的式子,利用配方法可以求得a、b的值,根据三角形三边关系确定c的值,由三角形周长可得结论;(3)根据配方法即可求出答案.【详解】解:(1)a2−8a+11=(a2−8a+16)−1=(a−4)2−12=(a−3)(a−1),故答案为:(a−3)(a−1);(2)∵a2+b2−14a−8b+61=0,∴(a2−14a+49)+(b2−8b+16)=0,∴(a−7)2+(b−4)2=0,∴a−7=0,b−4=0,解得,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=1,7,9,当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)−2x2−4x+3,=−2(x2+2x+1−1)+3,=−2(x+1)2+1,∴当x=−1时,多项式−2x2−4x+3有最大值,最大值是1.【点睛】本题考查配方法,三角形三边关系,解题的关键是正确理解题意给出的方法,解决问题,本题属于基础题型.22、(1)A城200吨,B城300吨;(2)y=4x+10040;(3)10040元,见解析.【解析】
(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式;(3)利用一次函数的性质即得结论.【详解】(1)设A城有化肥a吨,B城有化肥b吨根据题意,得解得答:A城和B城分别有200吨和300吨肥料;(2)∵从A城运往C乡肥料x吨,∴从A城运往D乡(200-x)吨,从B城运往C乡肥料(240-x)吨,则从B城运往D乡(60+x)吨.∴根据题意,得:y=20x+25(200-x)+15(240-x)+24(60+x)=4x+10040(3)由于y=4x+10040是一次函数,k=4>0,∴y随x的增大而增大.因为x≥0,所以当x=0时,运费最少,最少运费是10040元.∴当从A城运往D乡200吨,从B城运往C乡肥料240吨,则从B城运往D乡60吨时总运费最少,最少运费是10040元.【点睛】本题考查了二元一次方程组及一次函数的应用.根据题意列出一次函数解析式是关键.23、(1)见解析;(2)∠1=64°.【解析】
(1)(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠BCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)CE平分∠BCD得∠ECB=∠ECD,进而得到∠1=∠ECD,再由∠D=∠B=52°,运用三角形内角和,即可求解.【详解】解:(1)证明:∵四边形ABCD是平行四边形∴AB=CD∠B=∠DAD∥BC∴∠1=∠ECB∵AF∥CE∴∠AFB=∠ECB∴∠1=∠AFB∴△ABF≌△CDE(AAS)(2)∵CE平分∠BCD∴∠ECB=∠ECD∵∠1=∠ECB(已证)∴∠1=∠ECD∵∠B=52°∴∠D=∠B=52°∴∠1=∠ECD=【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.24、CE=【解析】
作AB的垂直平分线交BC于E,则根据线段垂直平分线的性质得到EA=EB,设CE=x,则EA=EB=1-x,利用勾股定理得到62+x2=(1-x)2,然后解方程即可.【详解】如图,点E为所作;设CE=x,则EA=EB=1-x,在Rt△AEC中,∵AC2+CE2=AE2,∴62
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私下换车协议书
- 实习人员劳务协议书
- 档案火灾应急预案新闻稿(3篇)
- 法国婚姻协议书
- 客车定点维修协议书
- 客运合同解除协议书
- 家具制作安装协议书
- 少儿春晚录制协议书
- 工程放水付款协议书
- 工资限期支付协议书
- DB11T 353-2021 城市道路清扫保洁质量与作业要求
- 2024年涤纶FDY油剂项目可行性研究报告
- 《形形色色的人》习作教学课件
- 2024-2030年中国军工信息化行业市场发展现状及发展趋势与投资战略研究报告
- 《复发性流产诊治专家共识2022》解读
- 初中生财商素质教育教学设计
- 泵站运行管理手册
- SH∕T 3097-2017 石油化工静电接地设计规范
- HJ1188-2021核医学辐射防护与安全要求
- 四川省绵阳市2023-2024学年高一下学期期末英语试题(解析版)
- 浙江省现代化水厂评价标准
评论
0/150
提交评论