版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年江苏省苏州昆山、太仓市八年级下册数学期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.将一张矩形纸片按照如图所示的方式折叠,然后沿虚线AB将阴影部分剪下,再将剪下的阴影部分纸片展开,所得到的平面图形是()A.直角三角形 B.等腰三角形 C.矩形 D.菱形2.下列长度的三条线段,能成为一个直角三角形的三边的一组是()A. B.1,2, C.2,4, D.9,16,253.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有()A.40人 B.30人 C.20人 D.10人4.矩形不具备的性质是()A.对角线相等 B.四条边一定相等C.是轴对称图形 D.是中心对称图形5.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米6.4名选手在相同条件下各射靶10次,统计结果如下表.表现较好且更稳定的是()A.甲 B.乙 C.丙 D.丁7.、、为三边,下列条件不能判断它是直角三角形的是()A. B.,,C. D.,,(为正整数)8.已知锐角三角形中,,点是、垂直平分线的交点,则的度数是()A. B. C. D.9.如图,在菱形中,,点、分别为、上的动点,,点从点向点运动的过程中,的长度()A.逐渐增加 B.逐渐减小C.保持不变且与的长度相等 D.保持不变且与的长度相等10.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交边于点,现分别以为圆心,以大于的长为半径画弧,两弧交于点,作射线交边于点,若则的面积是()A.10 B.20 C.30 D.4011.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.12.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)二、填空题(每题4分,共24分)13.直线y=2x﹣4与x轴的交点坐标是_____.14.函数中,自变量的取值范围是_____.15.如图,对面积为S的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;···;则______.按此规律继续下去,可得到,则其面积_______.16.若二次根式有意义,则x的取值范围为__________.17.计算:(1+)2×(1﹣)2=_____.18.方程2x+10-x=1的根是______三、解答题(共78分)19.(8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?20.(8分)在四边形中,对角线、相交于点,过点的直线分别交边、、、于点、、、(1)如图①,若四边形是正方形,且,易知,又因为,所以(不要求证明)(2)如图②,若四边形是矩形,且,若,,,求的长(用含、、的代数式表示);(3)如图③,若四边形是平行四边形,且,若,,,则.21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,,解答下列问题:(1)将向上平移1个单位长度,再向右平移5个单位长度后得到的,画出;(2)绕原点逆时针方向旋转得到,画出;(3)如果利用旋转可以得到,请直接写出旋转中心的坐标.22.(10分)某社区决定把一块长,宽的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边为何值时,活动区的面积达到?23.(10分)如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC于点F,连接CE求证:四边形BECD是矩形.24.(10分)如图,在△ABC中,AD平分∠BAC,AB+BD=AC,∠BAC=75°,则∠C的度数为____.25.(12分)如图,的一个外角为,求,,的度数.26.已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.(1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;(2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.①试判断四边形AEMF的形状,并说明理由;②求折痕EF的长.
参考答案一、选择题(每题4分,共48分)1、D【解析】
解答该类剪纸问题,通过自己动手操作即可得出答案;或者通过折叠的过程可以发现:该四边形的对角线互相垂直平分,继而进行判断.【详解】解:易得阴影部分展开后是一个四边形,
∵四边形的对角线互相平分,
∴是平行四边形,
∵对角线互相垂直,
∴该平行四边形是菱形,
故选:D.【点睛】本题主要考查了剪纸问题,学生的分析能力,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.2、B【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、∵()2+()2≠()2,∴不能构成直角三角形,故本选项错误;B、∵12+()2=22,∴能构成直角三角形,故本选项正确;C、∵22+()2≠42,∴不能构成直角三角形,故本选项错误;D、∵92+162≠252,∴不能构成直角三角形,故本选项错误.故选B.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3、C【解析】
根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.4、B【解析】
根据矩形的性质即可判断.【详解】解:矩形的对边相等,四条边不一定都相等,B选项错误,由矩形的性质可知选项A、C、D正确.故选:B【点睛】本题考查了矩形的性质,准确理解并掌握矩形的性质是解题的关键.5、D【解析】
根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.6、B【解析】
先比较平均数,乙、丁的平均成绩好且相等,再比较方差即可解答.【详解】解:∵乙、丁的平均成绩大于甲、丙,且乙的方差小于丁的方差,
∴表现较好且更稳定的是乙,
故选:B.【点睛】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7、C【解析】
根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.【详解】解:A.即,根据勾股定理逆定理可判断△ABC为直角三角形;B.,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;C.根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;D.,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;故选:C【点睛】本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.8、A【解析】
连接OA、OB,由,根据三角形内角和定理求出∠ABC+∠ACB=115°,根据线段的垂直平分线的性质得到OA=OB,OA=OC,根据等腰三角形的性质计算即可.【详解】解:如图,连接OA、OB,
∵∠BAC=65°,
∴∠ABC+∠ACB=115°,
∵O是AB,AC垂直平分线的交点,
∴OA=OB,OA=OC,
∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,
∴∠OBA+∠OCA=65°,
∴∠OBC+∠OCB=115°-65°=50°,
∵OB=OC,
∴∠BCO=∠OBC=25°,
故选:A.【点睛】本题考查的是线段的垂直平分线的性质以及三角形内角和定理,解决问题的关键是掌握:线段的垂直平分线上的点到线段的两个端点的距离相等.9、D【解析】【分析】如图,连接BD,由菱形的性质以及∠A=60°,可得△BCD是等边三角形,从而可得BD=BC,再通过证明△BCF≌BDE,从而可得CF=DE,继而可得到AE+CF=AB,由此即可作出判断.【详解】如图,连接BD,∵四边形ABCD是菱形,∠A=60°,∴CD=BC,∠C=∠A=60°,∠ABC=∠ADC==120°,∴∠4=∠DBC=60°,∴△BCD是等边三角形,∴BD=BC,∵∠2+∠3=∠EBF=60°,∠1+∠2=∠DBC=60°,∴∠1=∠3,在△BCF和△BDE中,,∴△BCF≌BDE,∴CF=DE,∵AE+DE=AB,∴AE+CF=AB,故选D.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,熟练掌握相关的定理与性质是解题的关键.10、B【解析】
根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DE,再由三角形的面积公式可得出结论.【详解】由题意可知AP为∠CAB的平分线,过点D作DE⊥AB于点E,∵∠C=90°,CD=1,∴CD=DE=1.∵AB=10,∴S△ABD=AB•DE=×10×1=2.故选B.【点睛】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.11、D【解析】
根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.12、A【解析】
根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题(每题4分,共24分)13、(2,0)【解析】
与x轴交点的纵坐标是0,所以把代入函数解析式,即可求得相应的x的值.【详解】解:令,则,解得.所以,直线与x轴的交点坐标是.故填:.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.14、【解析】
根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为:.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.15、19S【解析】
首先根据题意,求得,同理求得,则可求得面积的值;根据题意发现规律:即可求得答案.【详解】连,
∵,
∴,
同理:,
∴,
同理:,
∴,
即,同理:S,S,
∴.
故答案是:19S,.【点睛】本题主要考查了三角形面积及等积变换,利用三角形同高则面积比与底边关系分别分析得出规律:是解题关键.16、x≤1【解析】
解:∵二次根式有意义,∴1-x≥0,∴x≤1.故答案为:x≤1.17、1【解析】
根据积的乘方法则及平方差公式计算即可.【详解】原式=2.=.=1.故答案为1.【点睛】本题考查积的乘方及平方差公式,熟练掌握并灵活运用是解题关键.18、x=3【解析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.【详解】解:整理得:2x+10=x+1,方程两边平方,得:2x+10=x2+2x+1,移项合并同类项,得:x2=9,解得:x1=3,x2=-3,经检验,x2=-3不是原方程的解,则原方程的根为:x=3.故答案为:x=3.【点睛】本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.三、解答题(共78分)19、(1)111,51;(2)11.【解析】
(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:解得:x=51,经检验x=51是原方程的解,则甲工程队每天能完成绿化的面积是51×2=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得:1.4y+×1.25≤8,解得:y≥11,答:至少应安排甲队工作11天.20、(1)见解析;(2);(3)【解析】
(1)根据正方形的性质和全等三角形的性质即可得出结论;(2)过作于,于,根据图形的面积得到,继而得出结论;(3)过作,,则,,根据平行四边形的面积公式得出,根据三角形的面积公式列方程即可得出结论.【详解】解:(1)如图①,∵四边形ABCD是正方形,∴,,∵,∴,∴.(2)如图②,过作于,于,∵∴∵,∴,∴;(2)如图③,过作,,则,,∵,∴,∴,∵,,∴,∵,,∴,,,;故答案为:.【点睛】本题考查的知识点是正方形的性质,通过作辅助线,利用面积公式求解是解此题的关键.21、(1)见解析;(2)见解析;(3)(3,-2).【解析】
(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接得到△A1B1C1,然后写出A1的坐标即可;
(2)根据网格结构找出点A、B、C以点O为旋转中心逆时针方向旋转90°后的对应点,然后顺次连接得到△A2B2O;
(3)利用旋转的性质得出答案.【详解】(1)如图所示,为所求作的三角形;(2)如图所示,为所求作的三角形.(3)将△A2B2C2绕某点P旋转可以得到△A1B1C1,点的坐标为:.【点睛】考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22、当时,活动区的面积达到【解析】
根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y,则由题意得.即列方程:解得(舍),.∴当时,活动区的面积达到【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.23、证明见解析【解析】
根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【详解】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点睛】本题考查矩形的判定,掌握有一个角是直角的平行四边形是矩形是本题的解题关键.24、35°.【解析】
先在AC上截取AE=AB,连接DE.想办法求出∠B:∠C的值即可解决问题.【详解】在AC上截取AE=AB,连接DE∵∠BAD=∠DAE,AD=AD∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE又∵AB+BD=AC,∴CE=BD=DE∴∠C=∠EDC,∴∠B=∠AED=2∠C∴∠B:∠C=2:1,∵∠BAC=75°,∴∠B+∠C=180°﹣75°=105°,∴∠B=70°,∠C=35°,故答案为35°.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质等知识,以及三角形的外角等于不相邻的两个内角之和.作出辅助线是解答本题的关键.25、,,【解析】
利用已知可先求出∠BCD=110°,根据平行四边形的性质知,平行四边形的对角相等以及邻角互补来求∠A,∠B,∠D的度数.【详解】∵四边形ABCD是平行四边形,∴∠A=∠BCD,∠B=∠D,AB//CD,∵▱ABCD的一个外角为38°,∴∠BCD=142°,∴∠A=142°,∠B=∠DCE=38°,∴∠D=38°.【点睛】本题主要考查了平行四边形的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年马鞍山职业技术学院单招职业适应性测试备考试题及答案解析
- 2026年湖南工商职业学院单招职业适应性测试参考题库及答案解析
- 期末复习班会演讲稿
- 机械的实习报告(15篇)
- 2026年天府新区航空旅游职业学院单招职业适应性考试备考试题及答案解析
- 2026年保定电力职业技术学院单招职业适应性测试参考题库及答案解析
- 本学期个人工作计划(3篇)
- 2026年阳泉师范高等专科学校单招职业适应性测试模拟试题及答案解析
- 2026年深圳信息职业技术学院单招职业适应性考试模拟试题及答案解析
- 2026年广东金融学院单招职业适应性考试模拟试题及答案解析
- 国家基本公共卫生服务项目之健康教育
- 中国融通地产社招笔试
- DLT 572-2021 电力变压器运行规程
- DL∕T 1430-2015 变电设备在线监测系统技术导则
- DL∕ T 1166-2012 大型发电机励磁系统现场试验导则
- 国家开放大学电大《11876国际私法》期末终考题库及答案
- QBT 2739-2005 洗涤用品常用试验方法 滴定分析 (容量分析)用试验溶液的制备
- 员工下班喝酒意外免责协议书
- 光动力疗法治愈牙周溃疡探讨
- 2024年载货汽车项目营销策划方案
- 道家思想英文简介课件
评论
0/150
提交评论