版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年苏州市工业园区斜塘学校八年级数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图是小王早晨出门散步时,离家的距离s与时间t之间的函数图象.若用黑点表示小王家的位置,则小王散步行走的路线可能是()A. B. C. D.2.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12 D.163.下列各组数中,不能构成直角三角形的是()A.a=1,b=,c= B.a=5,b=12,c=13 C.a=1,b=,c= D.a=1,b=1,c=24.点A(-2,5)在反比例函数的图像上,则该函数图像位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为(
)A.5B.10C.15D.206.化简:()A.2 B.-2 C.4 D.-47.如图,在长为31m,宽为10m的矩形空地上修建同样宽的道路(图中阴影部分),剩余的空地上种植草坪,使草坪的面积为540m1.设道路的宽为xm,根据题意,下面列出的方程正确的是()A.31x+10x﹣1x1=540B.31x+10x=31×10﹣540C.(31﹣x)(10﹣x)=540D.(31﹣x)(10﹣x)=31×10﹣5408.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:甲乙丙丁平均数(cm)561560561560方差s23.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁9.下列说法正确的是()A.若两个向量相等则起点相同,终点相同B.零向量只有大小,没有方向C.如果四边形ABCD是平行四边形,那么=D.在平行四边形ABCD中,﹣=10.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形11.下列关于x的方程中,是分式方程的是().A. B.C. D.3x-2y=112.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数y=kx(k≠0,x>0)的图象上,点D的坐标为(﹣4,1),则A.54 B.-54 C.4二、填空题(每题4分,共24分)13.如图,二次函数的图象过点A(3,0),对称轴为直线,给出以下结论:①;②;③;④若M(-3,)、N(6,)为函数图象上的两点,则,其中正确的是____________.(只要填序号)14.一支蜡烛长10cm,点燃时每分钟燃烧0.2cm,则点燃后蜡烛长度(cm)随点燃时间(min)而变化的函数关系式为_____________________,自变量的取值范围是________________.15.若不等式组的解集是,那么m的取值范围是______.16.已知一组数据6、4、a、3、2的平均数是5,则a的值为_____.17.若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.18.已知y与2x成正比例,且当x=1时y=4,则y关于x的函数解析式是__________.三、解答题(共78分)19.(8分)如图,长方形中,点沿着边按.方向运动,开始以每秒个单位匀速运动、秒后变为每秒个单位匀速运动,秒后恢复原速匀速运动,在运动过程中,的面积与运动时间的函数关系如图所示.(1)直接写出长方形的长和宽;(2)求,,的值;(3)当点在边上时,直接写出与的函数解析式.20.(8分)如图,在的网格中,网格线的公共点称为格点.已知格点、,如图所示线段上存在另外一个格点.(1)建立平面直角坐标系,并标注轴、轴、原点;(2)直接写出线段经过的另外一个格点的坐标:_____;(3)用无刻度的直尺画图,运用所学的三角形全等的知识画出经过格点的射线,使(保留画图痕迹),并直接写出点的坐标:_____.21.(8分)如图,铁路上A,B两点相距25km,C,D为两村庄,于点A,于点B,若,,现要在AB上建一个周转站E,使得C,D两村到E站的距离相等,则周转站E应建在距A点多远处?22.(10分)如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.23.(10分)化简求值:,其中.24.(10分)如图矩形ABCD中,AB=12,BC=8,E、F分别为AB、CD的中点,点P、Q从A.C同时出发,在边AD、CB上以每秒1个单位向D、B运动,运动时间为t(0<t<8).(1)如图1,连接PE、EQ、QF、PF,求证:无论t在0<t<8内取任何值,四边形PEQF总为平行四边形;(2)如图2,连接PQ交CE于G,若PG=4QG,求t的值;(3)在运动过程中,是否存在某时刻使得PQ⊥CE于G?若存在,请求出t的值:若不存在,请说明理由25.(12分)如图,正方形ABCD中,AB=4,点E为边AD上一动点,连接CE,以CE为边,作正方形CEFG(点D、F在CE所在直线的同侧),H为CD中点,连接FH.(1)如图1,连接BE,BH,若四边形BEFH为平行四边形,求四边形BEFH的周长;(2)如图2,连接EH,若AE=1,求△EHF的面积;(3)直接写出点E在运动过程中,HF的最小值.26.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△ABC;(2)请画出△ABC关于原点对称的△ABC;
参考答案一、选择题(每题4分,共48分)1、D【解析】
分析图象,可知该图象是路程与时间的关系,先离家逐渐变远,然后距离不变,在逐渐变近,据此进行判断即可得.【详解】通过分析图象和题意可知,行走规律是:离家逐渐远去,离家距离不变,离家距离逐渐近,所以小王散步行走的路线可能是故选D.【点睛】本题考查了函数的图象,根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论是解题的关键.2、D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=110°-∠EFB=110°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2.∵AE=2,DE=6,∴AD=AE+DE=2+6=1.∴矩形ABCD的面积=AB•AD=2×1=16.故选D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.3、D【解析】
根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A、∵12+()2=()2,∴能构成直角三角形,不符合题意;B、∵52+122=132,,∴能构成直角三角形,不符合题意;C、∵12+32=()2,∴能构成直角三角形,不符合题意;D、∵12+12≠22,∴不能构成直角三角形,符合题意,故选D.【点睛】本题考查的是用勾股定理的逆定理判断三角形的形状,通常是看较小的两边的平方和是否等于最长边的平方,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.4、D【解析】
根据反比例函数上点的坐标特点可得k=-10,再根据反比例函数的性质可得函数图像位于第二、四象限.【详解】∵反比例函数的图像经过点(-2,5),∴k=(-2)×5=-10,∵-10<0,∴该函数位于第二、四象限,故选:D.【点睛】本题考查反比例函数上的点坐标的特点,反比例函数上的点横、纵坐标之积等于k;本题也考查了反比例函数的性质,对于反比例函数,当k大于0时,图像位于第一、三象限,当k小于0,图像位于第二、四象限.5、B【解析】
根据频率=,即可求得总数,进而即可求得第四小组的频数.【详解】解:总数是5÷0.1=50人;
则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,故选B.【点睛】本题考查频率的计算公式,解题关键是熟记公式.6、A【解析】
根据二次根式的性质解答.【详解】解:.故选:A.【点睛】本题主要考查了根据二次根式的性质化简.解题的关键是掌握二次根式的性质.7、C【解析】
把道路进行平移,可得草坪面积=长为31﹣x,宽为10﹣x的面积,把相关数值代入即可求解.【详解】解:把道路进行平移,可得草坪面积为一个矩形,长为31﹣x,宽为10﹣x,∴可列方程为:(31﹣x)(10﹣x)=2.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.8、A【解析】试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9、C【解析】
根据平面向量的性质即可判断.【详解】A、错误.两个向量相等还可以平行的;B、错误.向量是有方向的;C、正确.平行四边形的对边平行且相等;D、错误.应该是,+=;故选:C.【点睛】本题考查平面向量、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.11、B【解析】
根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A.C.D项中的方程分母中不含未知数,故不是分式方程;B.方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.12、D【解析】
由于点B的坐标不能求出,但根据反比例函数的几何意义只要求出矩形OEBF的面积也可,依据矩形的性质发现S矩形OGDH=S矩形OEBF,而S矩形OGDH可通过点D(﹣4,1)转化为线段长而求得.,在根据反比例函数的所在的象限,确定k的值即可.【详解】解:如图,根据矩形的性质可得:S矩形OGDH=S矩形OEBF,∵D(﹣4,1),∴OH=4,OG=1,∴S矩形OGDH=OH•OG=4,设B(a,b),则OE=a,OF=﹣b,∴S矩形OEBF,=OE•OF=﹣ab=4,又∵B(a,b)在函数y=kx(k≠0,x>∴k=ab=﹣4故选:D.【点睛】考查矩形的性质,反比例函数图象上点的坐标特征以及灵活地将坐标与线段长的相互转化.二、填空题(每题4分,共24分)13、①②③【解析】
①根据函数图像的开口、对称轴以及与y轴的交点可得出a、b、c的正负,即可判断正误;②根据函数对称轴可得出a、b之间的等量关系,将转化为,再由函数与x轴的交点关于对称轴对称,可得出另一个交点是(-1,0),即可得出的结果,即可判断正误;③根据a、b之间的等量关系,将不等式中的b代换成a,化简不等式即可判断正误;④根据开口向下的函数有最大值,距离顶点越近的函数值越大,先判断M、N距离顶点的距离即可判断两个点y值得大小.【详解】解:①∵函数开口向下,∴,∵对称轴,,∴;∵函数与y轴交点在y轴上半轴,∴,∴;所以①正确;②∵函数对称轴为,∴,∴,∵A(3,0)是函数与x轴交点,对称轴为,∴函数与x轴另一交点为(-1,0);∵当时,,∴,②正确;③∵函数对称轴为,∴,∴将带入可化为:,∵,不等式左右两边同除a需要不等号变方向,可得:,即,此不等式一定成立,所以③正确;④M(-3,)、N(6,)为函数图象上的两点,∵点M距离顶点4个单位长度,N点距离顶点5个单位长度,函数开口向下,距离顶点越近,函数值越大,∴,所以④错误.故答案为①②③.【点睛】本题考查二次函数图像与系数的关系,可通过开口判断a的正负,再根据对称轴可判断a、b的关系,即“左同右异”,根据函数与y轴交点的正负可判断c的正负;根据对称轴的具体值可得出a、b之间的等量关系;在比较函数值大小的时候,开口向下的二次函数上的点距离顶点越近,函数值越大即可判断函数值大小.14、y=10-0.2x0≤x≤50【解析】
根据点燃后蜡烛的长度=蜡烛原长-燃烧掉的长度可列出函数关系式;根据0≤y≤10可求出自变量的取值范围.【详解】解:由题意得:y=10-0.2x,∵0≤y≤10,∴0≤10-0.2x≤10,解得:0≤x≤50,∴自变量x的取值范围是:0≤x≤50,故答案为:y=10-0.2x;0≤x≤50.【点睛】本题考查了由实际问题抽象出一次函数,正确得出变量之间的关系是解题的关键.15、.【解析】
求出不等式x+9<4x-3的解集,再与已知不等式组的解集相比较即可得出结论.【详解】:,解不等式得,,不等式组的解集为,,故答案为:.【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16、1.【解析】
根据平均数的定义列出方程,解方程可得.【详解】∵数据6、4、a、3、2的平均数是5,∴,解得:a=1,故答案为:1.【点睛】本题主要考查算术平均数的计算,熟练掌握算术平均数的定义是解题的关键.17、-1【解析】已知3是关于x的方程x1-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一个根是x=-1.18、y=4x【解析】
根据y与1x成正比例,当x=1时,y=4,用待定系数法可求出函数关系式.【详解】解:设所求的函数解析式为:y=k•1x,
将x=1,y=4代入,得:4=k•1,
所以:k=1.
则y关于x的函数解析式是:y=4x.
故答案为:y=4x.【点睛】本题考查待定系数法求解析式,解题关键是根据已知条件,用待定系数法求得函数解析式k的值,写出y关于x的函数解析式.三、解答题(共78分)19、(1)长方形的长为8,宽为1;(2)m=1,a=1,b=11;(3)S与t的函数解析式为.【解析】
(1)由图象可知:当6≤t≤8时,△ABP面积不变,由此可求得长方形的宽,再根据点P运动到点C时S△ABP=16,即可求出长方形的长;(2)由图象知当t=a时,S△ABP=8=S△ABP,可判断出此时点P的位置,即可求出a和m的值,再根据当t=b时,S△ABP=1,可求出AP的长,进而可得b的值;(3)先判断与成一次函数关系,再用待定系数法求解即可.【详解】解:(1)从图象可知,当6≤t≤8时,△ABP面积不变,∴6≤t≤8时,点P从点C运动到点D,且这时速度为每秒2个单位,∴CD=2(8-6)=1,∴AB=CD=1.当t=6时(点P运动到点C),由图象知:S△ABP=16,∴AB•BC=16,即×1×BC=16.∴BC=8.∴长方形的长为8,宽为1.(2)当t=a时,S△ABP=8=×16,此时点P在BC的中点处,∴PC=BC=×8=1,∴2(6-a)=1,∴a=1.∵BP=PC=1,∴m===1.当t=b时,S△ABP=AB•AP=1,∴×1×AP=1,AP=2.∴b=13-2=11.故m=1,a=1,b=11.(3)当8≤t≤11时,S关于t的函数图象是过点(8,16),(11,1)的一条线段,可设S=kt+b,∴,解得,∴S=-1t+18(8≤t≤11).同理可求得当11<t≤13时,S关于t的函数解析式为S=-2t+26(11<t≤13).∴S与t的函数解析式为.【点睛】本题是一次函数的综合题,重点考查了动点问题的函数图象和用待定系数法求一次函数的解析式,弄清题意,抓住动点运动中的几个关键点,读懂图象所提供的信息是解题的关键.20、(1)如图所示见解析;(2)(5,4);(3).【解析】
(1)由可确定原点的位置,进而建立平面直角坐标系;(2)观察线段即可看出经过格点(5,4);(3)先把EA绕点E顺时针旋转90度找到格点A的对应格点F,再对比E、B的相对位置找到点F的对应格点D.【详解】(1)如图所示(2)E(5,4).如下图(3)如下图先把EA绕点E顺时针旋转90度找到格点A的对应格点F,再对比E、B的相对位置找到点F的对应格点D,故.此时点D的坐标是(3,5).【点睛】本题考查了网格问题及坐标系的有关知识,通过旋转得到垂直是解题的关键.21、E应建在距A点15km处.【解析】
根据题意设E点在距A点xkm处,再由勾股定理列出方程和,再由进行求解即可.【详解】解:设E点在距A点xkm处,则AE长为xkm,BE长为km.,是直角三角形.由勾股定理,得.同理,在中,,由题意,得,即..,解得.答:E应建在距A点15km处.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理的应用.22、小路的宽为2米.【解析】
根据“小路与观赏亭的面积之和占草坪面积的”,建立方程求解即可得出结论.【详解】设小路的宽为x米,由题意得,(5x)2+(40+50)x﹣2×x×5x=×40×50解得,x=2或x=﹣8(不合题意,舍去)答:小路的宽为2米.【点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.23、【解析】
直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【详解】解:当时:原式.【点睛】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.24、(1)见解析;(2);(3)不存在,理由见解析.【解析】
(1)由矩形的性质得出CD=AB=12,AD=BC=8,∠A=∠B=∠C=∠D=90°,由SAS证明△APE≌△CQF,得出PE=QF,同理:PF=QE,即可得出结论;(2)根据题意得:AP=CQ=t,∴PD=QB=8-t,作EF∥BC交CD于E,交PQ于H,证出EH是梯形ABQP的中位线,由梯形中位线定理得出EH=(AP+BQ)=4,证出GH:GQ=3:2,由平行线得出△EGH∽△CGQ,得出对应边成比例,即可得出t的值;(3)由勾股定理求出CE==10,作EM∥BC交PQ于M,由(2)得:ME=4,证出△GCQ∽△BCE,得出对应边成比例求出CG=t,得出EG=10-t,由平行线证明△GME∽△GQC,得出对应边成比例,求出t=0或t=8.5,即可得出结论.【详解】(1)证明:∵四边形ABCD是矩形,∴CD=AB=12,AD=BC=8,∠A=∠B=∠C=∠D=90°,∵E、F分别为AB、CD的中点,∴AE=BE=6,DF=CF=6,∴AE=BE=DF=CF,∵点P、Q从A.C同时出发,在边AD、CB上以每秒1个单位向D、B运动,∴AP=CQ=t,在△APE和△CQF中,,∴△APE≌△CQF(SAS),∴PE=QF,同理:PF=QE,∴四边形PEQF总为平行四边形;(2)根据题意得:AP=CQ=t,∴PD=QB=8−t,作EF∥BC交CD于E,交PQ于H,如图2所示:则F为CD的中点,H为PQ的中点,EF=BC=8,∴EH是梯形ABQP的中位线,∴EH=(AP+BQ)=4,∵PG=4QG,∴GH:GQ=3:2,∵EF∥BC,∴△EGH∽△CGQ,∴=,即4t=,解得:t=,∴若PG=4QG,t的为值;(3)不存在,理由如下:∵∠B=90°,BE=6,BC=8,∴CE==10,作EM∥BC交PQ于M,如图3所示:由(2)得:ME=4,∵PQ⊥CE,∴∠CGQ=90°=∠B,∵∠GCQ=∠BCE,∴△GCQ∽△BCE,∴,即=,∴CG=t,∴EG=10−t,∵EM∥BC,∴△GME∽△GQC,∴,即,解得:t=0或t=8.5,∵0<t<8,∴不存在。【点睛】此题考查四边形综合题,解题关键在于作辅助线25、(1)8;(2);(3)3.【解析】
(1)由平行四边形的性质和正方形的性质可得EC=EF=BH,BC=DC,可证Rt△BHC≌Rt△CED,可得CH=DE,由“SAS”可证BE=EC,可得BE=EF=HF=BH=EC,由勾股定理可求BH的长,即可求四边形BEFH的周长;
(2)连接DF,过点F作FM⊥AD,交AD延长线于点M,由“AAS”可证△EFM≌△CED,可得CD=EM=4,DE=FM=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 优先分红协议书
- 169.智慧教育示范区建设经验与启示考核试卷
- 证监会和解协议书披露
- 淘宝运营托管协议书
- 气泵租赁协议书范文
- 自由协议书free币
- 产品海外总代理协议书
- 2025年航空运输行业航空运输与智能机场建设研究报告及未来发展趋势预测
- 2025年物流行业Cybersecurity资格考试DevSecOps流程集成考核试卷
- 2025年装配式建筑施工标准规范考核试卷
- 2025贵州毕节市中医医院招聘暨人才引进编外聘用专业技术人员78人笔试考试备考试题及答案解析
- 2025人教版初一历史上册期中测试卷
- 2025初中道德与法治思维导图总结
- 山西长治文化艺术学校招聘笔试真题2024
- 知到《性与生殖健康讲堂(湖南中医药大学)》智慧树网课完整版章节测试答案
- 品质意识培训内容
- 西藏美食课件
- 2025年学校公开招聘教师简章
- 2025年电力行业安全生产考试题库(规范试题)试卷(含答案)
- 2025中国远洋海运集团有限公司校园招聘1200人笔试历年参考题库附带答案详解
- 脓毒性休克相关课件
评论
0/150
提交评论