版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市黄梅实验中学2024年数学八年级下册期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.(A) B.(B) C.(C) D.(D)2.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.263.一次函数y=3x-2的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限4.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠35.在中,,,、、的对边分别是、、,则下列结论错误的是()A. B. C. D.6.如图,点P是反比例函数y=6/x的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积A.1 B.2 C.3 D.47.数据1、5、7、4、8的中位数是A.4 B.5 C.6 D.78.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.b2﹣c2=a2 B.a:b:c=3:4:5C.∠A:∠B:∠C=9:12:15 D.∠C=∠A﹣∠B9.已知直线y=kx+b经过一、二、三象限,则直线y=bx-k-2的图象只能是()A. B. C. D.10.只用一种多边形不能镶嵌整个平面的是()A.正三角形 B.正四边形 C.正五边形 D.正六边形11.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠AOD=120°,BD=6.则A.32 B.3 C.2312.如图,这组数据的组数与组距分别为()A.5,9 B.6,9C.5,10 D.6,10二、填空题(每题4分,共24分)13.如图是小明统计同学的年龄后绘制的频数直方图,该班学生的平均年龄是__________岁.14.一个正方形的面积为4,则其对角线的长为________.15.如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.16.若有意义,则m能取的最小整数值是__.17.一个n边形的每一个内角等于108°,那么n=_____.18.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是______.三、解答题(共78分)19.(8分)某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.20.(8分)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点G.(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是___________形;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.求证:BF=AB+DF;若AD=AB,试探索线段DF与FC的数量关系.21.(8分)已知四边形ABCD和四边形CEFG都是正方形,且AB>CE(1)如图1,连接BG、DE,求证:BG=DE(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD①求∠BDE的度数②若正方形ABCD的边长是,请直接写出正方形CEFG的边长____________22.(10分)先化简,再求代数式的值,其中23.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.24.(10分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa。(1)求P与V之间的函数表达式;(2)当气球内的气压大于100kPa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?25.(12分)某市某水果批发市场某批发商原计划以每千克10元的单价对外批发销售某种水果.为了加快销售,该批发商对价格进行两次下调后,售价降为每千克6.4元.(1)求平均每次下调的百分率;(2)某大型超市准备到该批发商处购买2吨该水果,因数量较多,该批发商决定再给予两种优惠方案以供选择.方案一:打八折销售;方案二:不打折,每吨优惠现金1000元.试问超市采购员选择哪种方案更优惠?请说明理由.26.如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)如果BC=,AC=3,求CD的长.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选C.2、D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=(AB+EH)×BE=(8+5)×4=1.故选D.3、B【解析】
因为k=3>0,b=-2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第一、三象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=3x-2的图象不经过第二象限.【详解】对于一次函数y=3x-2,∵k=3>0,∴图象经过第一、三象限;又∵b=-2<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第四象限,∴一次函数y=3x-2的图象不经过第二象限.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.4、D【解析】
分式有意义,则分式的分母不为零,即x-3≠0,据此求解即可.【详解】若分式有意义,则x-3≠0,x≠3故选:D【点睛】本题考查的是分式有意义的条件,掌握分式有意义时分式的分母不为0是关键.5、D【解析】
根据直角三角形的性质得到c=1a,根据勾股定理计算,判断即可.【详解】解:∵∠C=90°,∠A=30°,
∴c=1a,A正确,不符合题意;
由勾股定理得,a1+b1=c1,B正确,不符合题意;
b==a,即a:b=1:,C正确,不符合题意;
∴b1=3a1,D错误,符合题意,
故选:D.【点睛】本题考查的是勾股定理、直角三角形的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.6、C【解析】试题分析:P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,∴与坐标轴构成矩形OAPB的面积=1.∴阴影部分的面积=×矩形OAPB的面积=2.考点:反比例函数系数k的几何意义7、B【解析】
根据中位数的定义进行解答即可得出答案.【详解】将数据从小到大重新排列为:1、4、5、7、8,则这组数据的中位数为5,故选B.【点睛】本题考查了中位数的定义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8、C【解析】
根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D是否是直角三角形.【详解】A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;
B、∵32+42=52,∴△ABC为直角三角形;
C、∵∠A:∠B:∠C=9:12:15,,故不能判定△ABC是直角三角形;
D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;
故选C.【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.9、C【解析】
由直线y=kx+b经过一、二、三象限可得出k>0,b>0,进而可得出−k−2<0,再利用一次函数图象与系数的关系可得出直线y=bx−k−2的图象经过第一、三、四象限.【详解】解:∵直线y=kx+b经过一、二、三象限,∴k>0,b>0,∴−k−2<0,∴直线y=bx−k−2的图象经过第一、三、四象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,牢记“k>0,b>0时,y=kx+b的图象在一、二、三象限;k>0,b<0时,y=kx+b的图象在一、三、四象限”是解题的关键.10、C【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【详解】解:A、正三角形的每个内角是60°,能整除360°,能镶嵌整个平面;
B、正四边形的每个内角是90°,能整除360°,能镶嵌整个平面;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌整个平面;
D、正六边形的每个内角是120°,能整除360°,能镶嵌整个平面.
故选:C.【点睛】本题考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.11、B【解析】
根据矩形的对角线的性质可得△AOB为等边三角形,由等边三角形的性质即可求出AB的值.【详解】∵ABCD是矩形,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB为等边三角形,∵BD=6,∴AB=OB=3,故选:B.【点睛】本题考查了矩形的性质、等边三角形的判定与性质,熟练掌握矩形的性质,证明三角形是等边三角形是解题的关键.12、D【解析】
通过观察频率分布直方图,发现一共分为6组,每一组的最大值和最小值的差都是10,做出判断.【详解】解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,故选:D.【点睛】考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.二、填空题(每题4分,共24分)13、【解析】
利用总年龄除以总人数即可得解.【详解】解:由题意可得该班学生的平均年龄为.故答案为:14.4.【点睛】本题主要考查频数直方图,解此题的关键在于准确理解频数直方图中所表达的信息.14、【解析】
已知正方形的面积,可以求出正方形的边长,根据正方形的边长可以求出正方形的对角线长.【详解】如图,∵正方形ABCD面积为4,∴正方形ABCD的边长AB==2,根据勾股定理计算BD=.故答案为:.【点睛】本题考查了正方形面积的计算,考查了勾股定理的运用,计算正方形的边长是解题的关键.15、y=2x+1【解析】试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.解:由图象可知,点(0,0)、(2,4)在直线OA上,∴向上平移1个单位得到的点是(0,1)(2,5),那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,则b=1,2k+b=5解得:k=2.∴y=2x+1.故答案为:y=2x+1.点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.16、1【解析】
根据二次根式的意义,先求m的取值范围,再在范围内求m的最小整数值.【详解】∵若有意义∴3m﹣1≥0,解得m≥故m能取的最小整数值是1【点睛】本题考查了二次根式的意义以及不等式的特殊解等相关问题.17、1【解析】
首先求得外角的度数,然后利用360度除以外角的度数即可求得.【详解】解:外角的度数是:180°﹣108°=72°,则n==1,故答案为1.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.18、【解析】
根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【详解】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE=2,∴AB=,故答案为.【点睛】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.三、解答题(共78分)19、甲盒用1.6米材料;制作每个乙盒用1.5米材料;l=1.1n+1511,1711.【解析】
首先设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n的取值范围,然后根据l与n的关系列出函数解析式,根据一次函数的增减性求出最小值.【详解】解:(1)设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料由题可得:解得x=1.5(米)经检验x=1.5是原方程的解,所以制作甲盒用1.6米答:制作每个甲盒用1.6米材料;制作每个乙盒用1.5米材料(2)由题∴∵,∴l随n增大而增大,∴当时,考点:分式方程的应用,一次函数的性质.20、正方形【解析】分析:(1)如图1,当点G恰好在BC边上时,四边形ABGE的形状是正方形,理由为:由折叠得到两对边相等,三个角为直角,确定出四边形ABEG为矩形,再由矩形对边相等,等量代换得到四条边相等,即邻边相等,即可得证;(2)①如图2,连接EF,由ABCD为矩形,得到两组对边相等,四个角为直角,再由E为AD中点,得到AE=DE,由折叠的性质得到BG=AB,EG=AE=ED,且∠EGB=∠A=90°,利用HL得到直角三角形EFG与直角△EDF全等,利用全等三角形对应边相等得到DF=FG,由BF=BG+GF,等量代换即可得证;②CF=DF,理由为:不妨假设AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,进而表示出BF,CF,在直角△BCF中,利用勾股定理列出关系式,整理得到a=2b,由CD-DF=FC,代换即可得证.详解:(1)正方形;(2)①如图2,连结EF,在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴BG=AB,EG=AE=ED,∠A=∠BGE=90°∴∠EGF=∠D=90°,在Rt△EGF和Rt△EDF中,∵EG=ED,EF=EF,∴Rt△EGF≌Rt△EDF,∴DF=FG,∴BF=BG+GF=AB+DF;②不妨假设AB=DC=,DF=,∴AD=BC=,由①得:BF=AB+DF∴BF=,CF=,在Rt△BCF中,由勾股定理得:∴,∴,∵,∴,即:CD=DF,∵CF=DF-DF,∴3CF=DF.点睛:此题属于四边形综合题,涉及的知识有:矩形的性质,折叠的性质,正方形的判定,全等三角形的判定与性质,勾股定理,熟练掌握图形的判定与性质是解本题的关键.21、(1)见解析;(2)①∠BDE=60°;②−1.【解析】
(1)根据正方形的性质可以得出BC=DC,CG=CE,∠BCD=∠GCE=90°,再证明△BCG≌△DCE就可以得出结论;(2)①根据平行线的性质可以得出∠DCG=∠BDC=45°,可以得出∠BCG=∠BCE,可以得出△BCG≌△BCE,得出BG=BE得出△BDE为正三角形就可以得出结论;②延长EC交BD于点H,通过证明△BCE≌△BCG就可以得出∠BEC=∠DEC,就可以得出EH⊥BD,BH=BD,由勾股定理就可以求出EH的值,从而求出结论.【详解】(1)证明:∵四边形ABCD和CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°.∴∠BCD+∠DCG=∠GCE+∠DCG,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS).∴BG=DE;(2)①连接BE.由(1)可知:BG=DE.∵CG∥BD,∴∠DCG=∠BDC=45°.∴∠BCG=∠BCD+∠GCD=90°+45°=135°.∵∠GCE=90°,∴∠BCE=360°−∠BCG−∠GCE=360°−135°−90°=135°.∴∠BCG=∠BCE.∵BC=BC,CG=CE,在△BCG和△BCE中,,∴△BCG≌△BCE(SAS).∴BG=BE.∵BG=BD=DE,∴BD=BE=DE.∴△BDE为等边三角形。∴∠BDE=60°.②延长EC交BD于点H,在△BCE和△DCE中,,∴△BCE≌△BCG(SSS),∴∠BEC=∠DEC,∴EH⊥BD,BH=BD.∵BC=CD=,在Rt△BCD中由勾股定理,得∴BD=2.∴BH=1.∴CH=1.在Rt△BHE中,由勾股定理,得EH=,∴CE=−1.∴正方形CEFG的边长为−1.【点睛】此题考查四边形综合题,全等三角形的判定与性质,等边三角形的判定,勾股定理,正方形的性质,解题关键在于作辅助线和掌握判定定理.22、原式=【解析】分析:首先将分式的分子和分母进行因式分解,然后根据分式的除法和减法计算法则进行化简,最后将a的值代入化简后的式子得出答案.详解:解:===,当时,=.点睛:本题主要考查的是分式的化简求值问题,属于基础题型.在分式化简的时候一定要注意因式分解的方法.23、(1)作图见解析;(2)作图见解析.【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年民生银行兰州分行社会招聘备考题库含答案详解
- 2025年防城港市生态环境局招聘备考题库及参考答案详解
- 2025年能源产业十年分析:风能利用与能源存储报告
- 2025年陶瓷釉料五年艺术装饰专利分析报告
- 成都农商银行关于2025年产业金融岗社会招聘的备考题库及答案详解参考
- 2026四川广元市昭化区元坝镇人民政府招聘城镇公益性岗位人员23人模拟笔试试题及答案解析
- 2025年北京协和医院心内科合同制科研助理招聘备考题库及一套答案详解
- 2025鞍山台安县教育系统面向师范类院校应届毕业生校园招聘13人笔试重点题库及答案解析
- 2025山东劳动职业技术学院招聘8人笔试重点试题及答案解析
- 2025年光泽县县属国有企业专岗招聘退役军人2人考试核心试题及答案解析
- 100以内乘法除法口算题目汇编1000道可打印
- 拉力赛比赛流程
- 光缆海底故障诊断-深度研究
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 降低卧床患者便秘品管圈课件
- 工程测量水准仪课件
- 《枫丹白露宫苑景观分析》课件
- 中国石油大学(华东)自动控制课程设计 双容水箱系统的建模、仿真于控制-2
- 潘谢矿区西淝河、泥河、济河、港河水体下安全开采可行性论证报告
- 创业人生(上海大学)【超星尔雅学习通】章节答案
- GB/T 4957-2003非磁性基体金属上非导电覆盖层覆盖层厚度测量涡流法
评论
0/150
提交评论