辽宁省丹东33中学2024年八年级数学第二学期期末考试模拟试题含解析_第1页
辽宁省丹东33中学2024年八年级数学第二学期期末考试模拟试题含解析_第2页
辽宁省丹东33中学2024年八年级数学第二学期期末考试模拟试题含解析_第3页
辽宁省丹东33中学2024年八年级数学第二学期期末考试模拟试题含解析_第4页
辽宁省丹东33中学2024年八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省丹东33中学2024年八年级数学第二学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在平面直角坐标系内,点是原点,点的坐标是,点的坐标是,要使四边形是菱形,则满足条件的点的坐标是()A. B. C. D.2.已知().A.3 B.-3 C.5 D.-53.如图,在中,,,,点为斜边上一动点,过点作于,于点,连结,则线段的最小值为()A. B. C. D.4.在有理数中,分式有()A.1个 B.2个 C.3个 D.4个5.如果代数式4x2+kx+25能够分解成(2x﹣5)2的形式,那么k的值是()A.10 B.﹣20 C.±10 D.±206.一直角三角形两边分别为5和12,则第三边为()A.13 B. C.13或 D.77.从下面四个条件中任意选两个,能使四边形ABCD是平行四边形选法有()①;②;③;④A.2种 B.3种 C.4种 D.5种8.下列图书馆的标志中,是中心对称图形的是()A. B.C. D.9.一家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.525销售量/双12511731该鞋店决定本周多进一些尺码为23.5厘米的该品牌女鞋,影响鞋店决策的统计量是()A.方差 B.中位数 C.平均数 D.众数10.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°11.已知一次函数的图象经过点(0,3)和(-2,0),那么直线必经过点()A.(-4,-3) B.(4,6) C.(6,9) D.(-6,6)12.矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为()A.10cm2 B.15cm2 C.12cm2 D.10cm2或15cm2二、填空题(每题4分,共24分)13.在1,2,3,这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是________.14.等腰梯形的上底是10cm,下底是16cm,高是4cm,则等腰梯形的周长为______cm.15.在反比例函数图象上有三个点A(,)、B(,)、C(,),若<0<<,则,,的大小关系是.(用“<”号连接)16.如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.17.反比例函数经过点,则________.18.抛物线与轴的公共点是,则这条抛物线的对称轴是__________.三、解答题(共78分)19.(8分)(1)解分式方程:;(2)化简:20.(8分)(1)解不等式组:.(2)解方程:.21.(8分)已知关于x的方程﹣=m的解为非负数,求m的取值范围.22.(10分)(1)计算:;(2)已知x=2−,求(7+4)x2+(2+)x+的值23.(10分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米/分钟,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?24.(10分)解方程组x25.(12分)已知关于的一元二次方程:;(1)求证:无论为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及的值.26.用适当的方法解下列方程:(1)(2)

参考答案一、选择题(每题4分,共48分)1、C【解析】

由A,B两点坐标可以判断出AB⊥x轴,再根据菱形的性质可得OC的长,从而确定C点坐标.【详解】如图所示,∵A(3,4),B(3,-4)∴AB∥y轴,即AB⊥x轴,当四边形AOBC是菱形时,点C在x轴上,∴OC=2OD,∵OD=3,∴OC=6,即点C的坐标为(6,0).故选C.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的对角线互相垂直平分.2、A【解析】

观察已知m2-m-1=0可转化为m2-m=1,再对m4-m3-m+2提取公因式因式分解的过程中将m2-m作为一个整体代入,逐次降低m的次数,使问题得以解决.【详解】∵m2-m-1=0,∴m2-m=1,∴m4-m3-m+2=m2(m2-m)-m+2=m2-m+2=1+2=3,故选A.【点睛】本题考查了因式分解的应用,解决本题的关键是将m2-m作为一个整体出现,逐次降低m的次数.3、C【解析】

连接PC,先证明四边形ECFP是矩形,从而得EF=PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【详解】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=1,BC=6,∴AB=10,∴PC的最小值为:=4.1.∴线段EF长的最小值为4.1.故选C.【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.4、A【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】分母中不含字母,不是分式;分母中含字母,是分式;分母中不含字母,不是分式;分母中不含字母,不是分式;故选A.【点睛】本题考查了分式的概念,熟练掌握分式的判断依据是解题的关键.5、B【解析】

把等式右边按照完全平方公式展开,利用左右对应项相等,即可求k的值.【详解】∵代数式4x2+kx+25能够分解成(2x﹣5)2的形式,∴4x2+kx+25=(2x﹣5)2=4x2﹣20x+25,∴k=﹣20,故选:B.【点睛】本题是完全平方公式的应用,两数的平方和,再减去它们积的2倍,就构成了一个完全平方式;熟练掌握完全平方公式是解题关键.6、C【解析】

此题要考虑两种情况:当所求的边是斜边时;当所求的边是直角边时.【详解】由题意得:当所求的边是斜边时,则有=1;当所求的边是直角边时,则有=.故选:C.【点睛】本题考查了勾股定理的运用,难度不大,但要注意此类题的两种情况,很多学生只选1.7、C【解析】

根据平行四边形的五种判定方法,灵活运用平行四边形的判定定理,可作出判断.【详解】解:①和③根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;

①和②,③和④根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;

②和④根据两组对边分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;

所以能推出四边形ABCD为平行四边形的有四组故选C.【点睛】本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.8、C【解析】

根据中心对称图形的概念判断即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【点睛】此题主要考查了中心对称图形的概念.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.9、D【解析】

平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.10、A【解析】∵AB=AD,∴∠ADB=∠B=70°.∵AD=DC,∴35°.故选A.11、A【解析】分析:先根据“待定系数法”确定一次函数解析式,再检验直线解析式是否满足各点的横纵坐标.详解:设经过两点(0,3)和(−2,0)的直线解析式为y=kx+b,则,解得,∴y=x+3;A.当x=−4时,y=×(−4)+3=−3,点在直线上;B.当x=4时,y=×4+3=9≠6,点不在直线上;C.当x=6时,y=×6+3=12≠9,点不在直线上;D.当x=−6时,y=×(−6)+3=−6≠6,点不在直线上;故选A.点睛:本题考查用待定系数法求直线解析式以及一定经过某点的函数应适合这个点的横纵坐标,用待定系数法求出一次函数的解析式是解答本题的关键.12、D【解析】

根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.【详解】解:∵四边形ABCD是矩形,

∴AB=CD,AD=BC,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠AEB=∠ABE,

∴AB=AE,当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.

∴矩形ABCD的面积是:1×5=10cm1;

当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,

∴矩形ABCD的面积是:5×3=15cm1.

故矩形的面积是:10cm1或15cm1.

故选:D.【点睛】本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.二、填空题(每题4分,共24分)13、【解析】

四个数任取两个有6种可能.要使图象在第四象限,则k<0,找出满足条件的个数,除以6即可得出概率.【详解】依题可得,任取两个数的积作为k的值的可能情况有6种(1,2)、(1,3)、(1,-4)、(2,3)、(2,-4)、(3,-4),要使反比例函数y=kx的图象在第二、四象限,则k<0,这样的情况有3种即(1,-4)、(2,-4)、(3,-4),故概率为:=.【点睛】本题考查反比例函数的选择,根据题意找出满足情况的数量即是解题关键.14、1.【解析】

首先根据题意画出图形,过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【详解】解:过A,D作下底BC的垂线,

则BE=CF=(16-10)=3cm,

在直角△ABE中根据勾股定理得到:

AB=CD==5,

所以等腰梯形的周长=10+16+5×2=1cm.

故答案为:1.【点睛】本题考查等腰梯形的性质、勾股定理.注意掌握数形结合思想的应用.15、【解析】

根据反比例函数图象上点的坐标特征解答即可;【详解】解:∵反比例函数图象在第二,第四象限时,y随x的增大而增大,∵点A(,)在反比例函数图象上,<0,∴>0,∵B(,)、C(,)在反比例函数图象上,0<<,∴,∴,故答案为:.【点睛】本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.16、【解析】

如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,证明△ABE∽△ADM,根据相似三角形的性质可得AB:AD=BE:DM,证明△ADM≌△ANM,根据全等三角形的性质可得AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=9+m,MN=n,CM=9-n,由此可得,即9n=m(9+m),根据勾股定理可得AC=,从而可得CN=-(9+m),在Rt△CMN中,根据勾股定理则可得(9-n)2=n2+[-(9+m)]2,继而由9n=m(9+m),可得-2m(9+m)=2(9+m)2-2(9+m),化简得=9+2m,两边同时平方后整理得m2+6m-27=0,求得m=3或m=-9(舍去),再根据勾股定理即可求得答案.【详解】如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,则∠CAD=2∠DAM=2∠NAM,∠ANM=∠MNC=90°,∵∠CAD=2∠BAE,∴∠BAE=∠DAM,∵四边形ABCD是矩形,∴AB=CD=9,∠B=∠D=90°,AD=BC,∴△ABE∽△ADM,∴AB:AD=BE:DM,又∵AM=AM,∴△ADM≌△ANM,∴AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=CE+BE=9+m,MN=n,CM=CD-DM=9-n,∵AB:AD=BE:DM,∴,即9n=m(9+m),∵∠B=90°,∴AC=,∴CN=AC-AN=-(9+m),在Rt△CMN中,CM2=CN2+MN2,即(9-n)2=n2+[-(9+m)]2,∴81-18n+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,又∵9n=m(9+m),∴81-2m(9+m)+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,即-2m(9+m)=2(9+m)2-2(9+m),∴=9+2m,∴92+(9+m)2=(9+2m)2,即m2+6m-27=0,解得m=3或m=-9(舍去),∴AE=,故答案为:.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识,准确计算是解题的关键.17、3【解析】

把点代入即可求出k的值.【详解】解:因为反比例函数经过点,把代入,得.故答案为:3【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18、【解析】

根据二次函数的抛物线的对称性,可得二次函数与x轴的交点是关于抛物线的对称轴对称的,已知两个交点的坐标,求出中点,即可求出对称轴.【详解】解:根据抛物线的对称性可得:的中心坐标为(1,0)因此可得抛物线的对称轴为故答案为【点睛】本题主要考查抛物线的对称性,关键在于求出抛物线与x轴的交点坐标的中点.三、解答题(共78分)19、(1);(2).【解析】

(1)分式方程去分母转化为整式方程,求出整式方程的解可得x的值,经检验是分式方程的解;(2)原式括号中两项通分并进行同分母减法计算,同时利用除法法则变形、约分即可求解.【详解】(1)解:经检验:是原方程的解,所以原方程的解为.(2)原式.【点睛】本题考查了解分式方程以及分式方程的混合运算,熟练掌握运算法则是正确解题的关键.20、(1);(2).【解析】

(1)先分别求出①②不等式的解集,再确定不等式组的解集.(2)先去分母,然后按照整式方程求解,最后检验即可.【详解】解:(1)由①得:x≤1由②得:∴原不等式组的解集是:;(2)-7x=-7x=1经检验是原方程的根.【点睛】本题考查了解一元一次不等式组和分式方程.解一元一次不等式组的关键在于分别求出各不等式的解集;解分式方程的方法和整式方程类同,只是最后需要有检验环节,这也是易错点.21、m≥【解析】分析:先按解一元一次方程的一般步骤解原方程得到用含m的代数式表达的x的值,再根据题意列出不等式,解不等式即可求得m的取值范围.详解:解关于x的方程:,去分母得:,移项、合并同类项得:,∴又∵原方程的解为非负数,∴,解得:,∴m的取值范围是.点睛:本题的解题要点是:(1)解关于x的方程得到:,(2)由原方程的解为非负数列出不等式.22、(1)9-2;(2)2+【解析】

(1)根据二次根式的运算法则即可求出答案.(2)根据完全平方公式进行化简,然后将x的值代入即可求出答案.【详解】(1)原式=6+3−2+1−1=9-2(2)原式=(+2)2x2+(2+)x+=(+2)2(2-)2+(2+)(2-)+=(4-3)2+4-3+=1+1+=2+【点睛】本题考查学生的运算能力,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.23、(1)10,1;(2)y=1x﹣1;(3)登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.【解析】

根据函数图象由甲走的路程除以时间就可以求出甲的速度;根据函数图象可以求出乙在提速前每分离开地面的高度是15米,就可以求出b的值;(2)先根据乙的速度求出乙登上山顶的时间,求出B点的坐标,由待定系数法就可以求出解析式;

(3)由(2)的解析式建立方程求出其解就可以求出追上的时间,就可以求出乙离地面的高度,再减去A地的高度就可以得出结论.【详解】解:(1)10,1(2)设乙提速后的函数关系式为:y=kx+b,由于乙提速后是甲的3倍,所以k=1,且图象经过(2.1)所以1=2×1+b解得:b=﹣1所以乙提速后的关系式:y=1x﹣1.(3)甲的关系式:设甲的函数关系式为:y=mx+n,将n=100和点(20,10)代入,求得y=10x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论